
[image: Cover Image]

speedata Publisher: The manual

This manual describes the speedata Publisher in the version 4.18.0. The current ebook can always be found at https://doc.speedata.de/publisher/en/.

Introduction and basics

	
Introduction

	
Hello world!

	
Basics

In depth descriptions

	
Programming

	
Images

	
Tables

	
Publishing API

	
Advanced topics

	
Cookbook

Reference

	
Installation instructions

	
Filenames

	
speedata Publisher defaults

	
Running the speedata publisher on the command line

	
How to configure the speedata publisher

	
Lenghts and units

	
XPath- and layoutfunctions (old xpath parser)

	
XPath- and layoutfunctions (new xpath parser)

	
Internal variables

	
Associate XML editor with schema

	
speedata Publisher Pro plan

	
Changelog

	
Glossary

	
Compatibility with older versions

	
Compatibility list

	
Command reference

Introduction

The speedata Publisher is software for creating PDF files fully automatically from XML data. The data can be product data, structured texts or other content, for example.

The instructions on how something is to be displayed are available separately from the data. They are formulated in a programming language specially developed for this purpose.

What is it all for?

Many different documents can be created with the speedata Publisher. Classical use cases are

	
Product catalogues

	
Travel guides

	
Price lists

	
Data sheets

and many other documents, where it is important to obtain a result that is reproducible, fast and reliable and also “beautiful”.

Beautiful and fully automatic

The speedata Publisher is a non-interactive publishing software. This means there is no graphical user interface (GUI). All instructions must be established before the publishing process and determine how the data is arranged in the PDF. The unique combination of sophisticated algorithms and programmability allows extremely flexible layouts to be created that were previously reserved for interactive desktop publishing (DTP) programs such as Adobe’s InDesign.

Where can I get the software and how is it run?

The software can be downloaded for free (see chapter Installation) and is started via the console or shell. The command to start the Publisher is called sp. Therewith, all functionality can be used. Parameters can be specified via the command line or a configuration file.

$ sp

See the command line section for explanations on how to start the Publisher.

Examples

You can find some examples of real world documents in the showcase. If you need hands-on examples, you can find them in a separate repository on Github (https://github.com/speedata/examples). There you can find complete documents, which you can use to try out different functionality.

Examples from the repository

Remark: most of this manual is automatically translated. If you find any mistakes, please report them.

Hello, world!

The classic: “Hello, world!” Or: what does a simple document look like?
As already described, the input for the Publisher consists of two files: the data file and the layout file.
Both must be in XML format and must always be available.
The data file is saved under the name data.xml and the layout file under layout.xml.
These two files are best created with an XML editor or with the free text editor Visual Studio Code which has very good XML support.

If you want to try the “Hello World” example yourself, you can simply call sp new helloworld. This creates a directory with the two necessary files. So you can start immediately and create a PDF in this directory with the sp command.

The data file for the “Hello World” example is named data.xml:

<data>Hello world!</data>

That is enough for the simple example. The layout file is a bit more extensive (save as layout.xml):

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="."/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

These two files are stored in an otherwise empty directory. On the command line, change to this directory (with cd <directory name>) and call the Publisher with the command

$ sp

on. The $ character is intended to represent the prompt and is not entered. If everything goes smoothly, the result is a PDF file named publisher.pdf in the same directory.

For Windows users: if the publisher cannot create the PDF, this is sometimes because the same file is still open in a window. This can be Adobe Reader, but also Windows Explorer.

The “Hello World!” example explained

Here follows a short explanation of the two files. The data file can be structured as you wish, as long as the content is well-formed XML (see glossary).

<data>Hello world!</data>

The layout file is a bit more complicated, at least at first sight.

<Layout ①
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data"> ②
 <PlaceObject> ③
 <Textblock>
 <Paragraph>
 <Value select="."/> ④
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

	
The root element is called Layout and has the namespace urn:speedata.de:2009/publisher/en. The second namespace is necessary for the built-in functions, but is not used in the example. (Tip: nevertheless always specify it in the layout, so that there are no surprises later).

	
Here the data processing starts. The root element of the data file is specified in the attribute element.

	
<PlaceObject> is the command to output things (texts, images, boxes, …​) into the PDF.

	
The dot at the select attribute means “the current element”, in this case the root element. The text value of the element is output here, i.e. the string Hello world!

We will not discuss more at this point. Rather, there is a reference to the corresponding chapters in this manual: Under File organization is described how the data file and the layout file are to be structured, and under Outputting objects the command <PlaceObject> is described.

Basics

The study of this chapter should be sufficient to create layout rules by yourself. Occasionally, more detailed topics will be covered in more detail in a later chapter. For example, only the most important formatting for tables is dealt with; a separate chapter (chapter Tables) describes tables in detail. In such cases there is of course a cross-reference.

Another note for the manual. Many examples only show the layout file and not the corresponding data. In the data file the simple structure <data /> is always assumed. This can be recognized by the fact that the layout contains <Record element="data">. The easiest way to start the Publisher is to use sp --dummy, which simulates this data file.

How to write the layout

XML Editor

By using standard XML (UTF-8), the layout rules can be edited with any text editor.

The supplied XML schemas (RELAX NG and XML Schema (XSD)) make it easy to enter the layout ruleset. Such a schema can be thought of as a computer-readable instruction as to which commands may appear at which position in the layout. The instructions also contain information about the parameters that are permitted in each case. In addition, the scheme also provides help by briefly explaining each command and parameter. In short: if the editor can integrate this schema and also "understands" it, it is an input help that should not be underestimated. You reduce the number of errors and the input time significantly, editing the layout rules starts to be really fun (believe me).

To include this schema, you need to use a suitable XML editor that can process RELAX NG or XML Schemas, e.g:

	
OxygenXML (Mac, Windows, Linux)

	
Visual Studio Code (Mac, Windows, Linux, free)

The first two editors provide excellent cross-platform support for the schema.

	
XMLSpy (Windows)

	
XML Blueprint (Windows)

	
GNU Emacs with nxml-mode (cross platform, free)

	
jEdit (Mac, Windows, Linux, free)

The schema files for the layout rules are located in the ZIP file in the share/schema/ directory under the file names

layoutschema-de.rng
layoutschema-en.rng

for RELAX NG and

layoutschema-de.xsd
layoutschema-en.xsd

for XSD, depending on the desired language of the documentation. Further information on the schema can be found in the chapter Schema validation and in the appendix Associate XML editor with schema.

Namespace of the layout ruleset

The XML namespace of the layout ruleset is urn:speedata.de:2009/publisher/en. The additional XPath functions are in the namespace urn:speedata:2009/publisher/functions/en. A layout set should therefore always have this frame:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">
 ...
</Layout>

Then you can call speedata’s own functions with the prefix sd:, for example: sd:current-page() to determine the current page number.

Structure of the data file and the layout rules

You can use any data format so long as it is XML.

–
Freely adapted from Henry Ford

Data source: XML - well-formed and structured

The first prerequisite is that the data source is in XML (Extensible Markup Language) format. Other formats are not processed with the Publisher (using the Lua filter, CSV and Excel files can also be processed). In practice, this does not matter because all (structured) data can be converted into XML format.

Often people ask how the data XML must be structured. The answer is simple: there are no specifications, except that the XML must comply with the usual rules (well-formedness). These rules are listed in the glossary.

In addition, there are useful structuring recommendations:

	
The data should appear in the XML tree when it is needed. Data processing in the Publisher costs time and memory, so the information should be available where it is needed. There are of course exceptions. For example, global settings (colors, texts to be translated and so on) can be defined at the beginning of the file.

	
Different representations (variants) must be readable from the data. If, for example, a page change is to occur for a new article group (in the product catalog), a change of article group must be recognizable in the data.

	
The data should be as structured as possible. For example, a product catalog could contain article numbers in the form 123-12345. If the first three digits represent the article group, this could be recognized with regular expressions. It is simpler if the article group is already created in the data structure, so that no recognition is required.

A simple example for the arrangement:

<productdata>
 <globalsettings>
 ...
 </globalsettings>
 <articlegroup name="interior lights" number="123">
 <article number="123-12345">
 <property1>...</property1>
 <property2>...</property2>
 </article>
 <article number="123-12346">
 <property1>...</property1>
 <property2>...</property2>
 </article>
 </articlegroup>
 <articlegroup name="exterior lights" number="124">
 <article number="124-23456">
 <property1>...</property1>
 <property2>...</property2>
 </article>
 <article number="124-54321">
 <property1>...</property1>
 <property2>...</property2>
 </article>
 </articlegroup>
</productdata>

Redundancy does not hurt here, on the contrary. Since the article group in the example has a clear sequence of digits (123 or 124), the last five digits would be sufficient for the articles. You can assemble the number from articlegroup/@number, - and article/@number yourself. To save yourself the step, simply save the complete number on the article.

To summarize it: If you have the possibility to influence the structure of the data: better save too much information than too little. Experiment with the order of the data, sometimes the right structure makes layout creation much easier.

How do you access the data from the layout?

Since the data file can be structured as you like, special commands are needed to access the data. These are described below and in the appendix under XPath and Layout Functions (new XPath module). In the following we will start from this simple data file:

<catalog>
 <article nr="12345" price="99,95" quantity="1">
 <description>Text for atricle 12345</description>
 <image mainimage="yes">art12345.pdf</image>
 </article>
 <article nr="56789" price="45,95" quantity="5">
 <description>Text for atricle 56789</description>
 
 </article>
</catalog>

This data file is stored under the name data.xml so that the Publisher can find it.

The layout file (name: layout.xml) is executed during the import: all commands with the name <Record> are saved for later processing, all other commands have immediate effect. This means that if a command like <DefineColor> is included at the top level in the layout rules, it will be executed before the actual data processing starts.

A minimum layout file for the data structuring shown above is

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="catalog">

 </Record>

</Layout>

After calling sp nothing happens: no page is created, no error is output, the publisher simply quits:

...
Loading layout instructions "/home/example/layout-en.xml"
Loading data file "/home/example/data.xml"
Stop processing data
0 errors occurred
Duration: 0.158941 seconds
node_mem_usage=1 glue, 3 glue_spec, 1 dir, 1 user_defined
luastate_bytes=0

No pages of output.
Transcript written on publisher.log.
Total run time: 209.499431ms

No page is created because no further commands have been specified within the element <Record> that cause output.

The structure required for processing is as follows:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="catalog">
 ①
 <ProcessNode select="*"/> ②
 ③
 </Record>

 <Record element="article">
 ④
 </Record>

</Layout>

	
Commands to be executed before the first child elements, e.g. create title page or table of contents (the term child element refers to the data file).

	
Here, all child elements are called individually.

	
Commands for closing the PDF file

	
For each child item these commands are executed. The "focus" is now on an article, so you can access the attributes and child elements of articles.

Within the second <Record> command (④) you can now access child elements and attributes. Examples:

	
@nr results in the string 12345 in the first call and 56789 in the second pass.

	
description results in a sequence with one element, the content text (first article).

	
image/@mainimage is in the first case the string "yes" (the content of the attribute mainimage), in the second case the empty string "", because the attribute does not exist there.

For details, see the section on XPath functions.

Alternatively to the procedure with <ProcessNode> and its counterpart <Record>, child elements can also be accessed with <ForAll>. The following example creates a table line for each child element named article:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="catalog">
 <PlaceObject>
 <Table stretch="max"> ①
 <Tablehead> ②
 <Tr background-color="gray">
 <Td>
 <Paragraph><Value>Article number</Value></Paragraph>
 </Td>
 </Td>
 <Paragraph><Value>Description</Value></Paragraph>
 </Td>
 </Tr>
 </Tablehead>
 <ForAll select="article"> ③
 <Tr>
 <Td>
 <Paragraph><Value select="@nr"/></Paragraph>
 </Td>
 <Td>
 <Paragraph><Value select="description"/></Paragraph>
 </Td>
 </Tr>
 </ForAll>
 </Table>
 </PlaceObject>
 </Record>
</Layout>

	
A table is output that covers the entire width.

	
A table header has the property that it is repeated on every page.

	
Within the <ForAll>, the attributes and child elements of each article can be accessed, just like in the example above.

Tables are covered in the basics (chapter Introduction to tables) and in more detail in chapter 6.

Outputting objects

There are two commands to output objects. One is called <Output> and is only used for text that is to wrap to multiple pages. All other objects (images, tables, barcodes, …​) are output using the command <PlaceObject>.
The parameters are listed in detail in the command reference (see command <PlaceObject>). Here are some examples and possible applications.

In the simplest case, the command can be used as follows:

<Record element="data">
 <PlaceObject>
 <Image file="_samplea.pdf" width="5"/>
 </PlaceObject>
</Record>

Here an image is loaded with the specified file name and a specified width. The image _samplea.pdf (with underscore at the beginning) is included in the distribution and can be used as a placeholder.

The section about grids provides a detailed description of the design grid. Only so much should be mentioned here: The grid helps on the one hand to position the objects (easy arrangement of the objects) and on the other hand to find the right place. Grid cells are not occupied by two objects at the same time, unless you explicitly allow this.

This is an example of grid-based output. The specifications for row and column are coordinates in the page grid, where the upper left corner is position 1,1.

<PlaceObject row="4" column="5">
 <Image file="_samplea.pdf" width="5"/>
</PlaceObject>

The order in which the individual objects are output is important: the objects are drawn on top of each other. This means that objects that are output later overlap the previous objects. This can be useful for background images. In <AtPageCreation> you can output a stationery or page header, which is then overwritten with real content in the actual data processing. Or you can include a ready-made page and provide it with the correct page number:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <PlaceObject row="1" column="1">
 <Image file="termsofservice.pdf" width="180mm" height="280mm"/>
 </PlaceObject>
 <PlaceObject
 column="1"
 row="{sd:number-of-rows()}">
 <Textblock textformat="right">
 <Paragraph>
 <Value select="sd:current-page()"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

Here the page is first integrated and then the current page number is "printed" right-justified in the last line.

Images, barcodes, boxes etc. have fixed widths and heights. Texts and tables use the available width.
That is, the width is the difference between the number of grid cells and the start column plus 1. For an example width of 15 grid boxes and a start column of 6, the text width is 10, unless otherwise specified.

If an object (such as images) requires a width or height specification, this can be given either as an absolute value (e.g. 5cm) or in grid cells.

Text block

This is a rectangular text area that is not wrapped over multiple pages. Text blocks are ideal for page numbers, short descriptions, column titles and all other units where page breaks are not desired.

A <text block> can contain one or more paragraphs (<paragraph>). Both the text block itself and paragraphs can contain information about the font, colors and text formats used. If these are declared in the paragraphs, they take precedence over those specified in the text block.

<Textblock color="blue">
 <Paragraph color="green">
 <Value>green text</Value>
 </Paragraph>
 <Paragraph>
 <Value>this text is in blue (given by Textblock)</Value>
 </Paragraph>
</Textblock>

Further formatting options are described in the section Including Fonts and Text Formatting.

Specifications in the paragraphs overwrite the values in the text block

The complete description of <Textblock> can be found in the reference (section Text block). For texts that may wrap across page boundaries, there is the command <Text> as a child element of <Output>, described in the next section.

Texts with page break

Texts with a page break are not output with <PlaceObject> like the other objects, but with <Output>. The syntax for this is

<Output>
 <Text>
 <Paragraph>
 <Value>...</Value>
 </Paragraph>
 <Paragraph>
 <Value>...</Value>
 </Paragraph>
 </Text>
</Output>

Besides the special feature that this text can wrap around several pages, it is also able to wrap around objects. A detailed description of this property is given in the section Flowing around images.

Introduction to tables

The table model used in the Publisher corresponds approximately to the model known from HTML.
The rows are specified with <Tr> and the individual columns with <Td>.

The structure of a simple table without column declaration, header and footer looks as follows:

<PlaceObject>
 <Table>
 <Tr>
 <Td>...</Td>
 <Td>...</Td>
 </Tr>
 <Tr>
 <Td>...</Td>
 <Td>...</Td>
 </Tr>
 </Table>
</PlaceObject>

The contents of the table cells can be paragraphs, pictures and other objects.

<Td>
 <Paragraph>
 <Value>...</Value>
 </Paragraph>
</Td>

<Td>
 <Image file="ocean.pdf" width="4"/>
</Td>

A practical feature of tables is that they can run over several pages, even with repeating headers and footers.
The table cells can contain text, images, barcodes, etc.; in other words, anything that can also be contained in `<PlaceObject>'.
Individual cells are never wrapped to multiple pages, i.e. they are set as a rectangular box, even if the contents would allow wrapping (e.g. texts or tables).

A separate chapter is devoted to the topic of tables a separate chapter.

Images

Including images is, as already shown at the beginning, very easy. The command for this is `<Image>':

<PlaceObject>
 <Image file="_samplea.pdf" width="5cm"/>
</PlaceObject>

Images can be in the formats PDF, JPEG and PNG and can be integrated. All other formats such as Tiff or SVG must be converted first.

The command for embedding images is very powerful and is described in detail in a separate section (Image inclusion). The reference contains a short description of all possibilities.

Rectangular areas (<Box>)

Rectangular surfaces are created with the command <Box>.

<PlaceObject>
 <Box width="4" height="3" background-color="limegreen"/>
</PlaceObject>

A colored box, output with <Box>

Boxes are often used for colored areas behind a text or table. In this case the allocation of the raster cells must be switched off (allocate="no" at <PlaceObject>), otherwise a warning will be issued because of the double allocation of the area in the PDF (see section Grid). An example for the use of boxes as background can be found in the section about grip marks. There, the parameter bleed is also explained, which is used to enlarge the box in one or more directions, if they are located at the page margin.

Circle

Circles are output with the command <Circle>:

<Record element="data">
 <PlaceObject column="5" row="5">
 <Circle radiusx="3" background-color="goldenrod"/>
 </PlaceObject>
 <PlaceObject column="5" row="5">
 <Circle radiusx="1pt" background-color="black"/>
 </PlaceObject>
</Record>

In this example the radius of the large circle is 3 grid boxes and the center of the circle is in the upper left corner of the box (5.5). So it starts in the second column and the second row and extends to the seventh column and row. Circles have the special property that no grid cells are marked as allocated.

Circle with radius 3 and center at (5,5)

Rules

There are horizontal and vertical rules. These can have a thickness, a color and a length. Rules can be solid and dashed:

<PlaceObject column="2" row="2">
 <Rule direction="horizontal" length="4" dashed="yes"/>
</PlaceObject>

Rules are always aligned in the upper left corner of the box.

A dashed rule.

Frame

The frame (like the transformation below) is a special object that you place over another object. A frame (<Frame>) always contains another object, for example a picture.

<PlaceObject>
 <Frame
 border-bottom-left-radius="8pt"
 border-bottom-right-radius="8pt"
 border-top-left-radius="8pt"
 border-top-right-radius="8pt"
 framecolor="darkseagreen"
 rulewidth="2pt">
 <Image file="_samplea.pdf" width="4"/>
 </Frame>
</PlaceObject>

You can see that the frame works as a clipping path, the parts outside are hidden. You can also set the rulewidth to zero and make it invisible, then only the content will be clipped.

Frame with radius 8pt and line width of 2 points.

Transformation

The four basic transformations (from the PDF specification)

Like the frame, the transformation is an enclosing element. This means that the element must still have a content, such as an image.

In the transformation, you specify a matrix consisting of six numbers in the form "a b c d e f". The transformation from one coordinate system to another is mapped using the following 3x3 matrix:

If you want to calculate the new coordinates x' and y' from the coordinates x and y, you can also do this using the following formulas:

There are the following basic transformation types (see figure The four basic transformations (from the PDF specification))

	
Displacements (translation) are described with the values 1 0 0 1 tx ty . Scaling is specified with sx 0 0 0 sy 0 0 0

	
Rotation can be achieved with cos θ sin θ -sin θ cos θ 0 0

	
Displacements (skew) are described with 1 tan α tan β 1 0 0

	
The unchanging transformation is 1 0 0 1 0 0 (identical figure).

<PlaceObject>
 <Transformation matrix="1.8 0.2 0.2 0.8 0 0 ">
 <Image file="ocean.pdf" width="4"/>
 </Transformation>
</PlaceObject>

Shifting and scaling by the transformation matrix.

Barcodes, QR Codes

Barcodes or QR codes are integrated via the command <Barcode>:

<PlaceObject>
 <Barcode select="'Hello world'" type="QRCode" width="5"/>
</PlaceObject>

The output is as expected

Hello World in pixels

Barcodes in the coding "EAN13" and "Code 128" can be output.

Clipping

Since version 4.11.3 the speedata Publisher can clip any kind of objects. The new object is smaller than the original object if the method is clip (method=clip, the default) is selected, otherwise (method=frame) the resulting object has the original size but the visible portion of the image is set to the clipping path.

A user came up with a very good description of the differences between the methods clip and frame:

If Publisher had scissors, “clip” would cut the image itself, while “frame” would cut a frame to be placed on top of the image (enabling partial display).

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">
 <Pageformat height="14cm" width="11cm" />

 <Record element="data">
 <PlaceObject>
 <Clip left="1cm" right="1cm" top="1cm" bottom="2cm" method="clip">
 <Image width="5cm" file="_sampleb.pdf" />
 </Clip>
 </PlaceObject>
 <PlaceObject column="5" >
 <Image width="5cm" file="_sampleb.pdf" />
 </PlaceObject>
 </Record>
</Layout>

A clipped and a non-clipped image.

Grid

The grid is a set of invisible lines or boxes to which objects are aligned. It is familiar from newspaper printing, for example, where there are often five or six columns. All pictures or advertisements then fill one or more columns. Likewise, there are often grid lines in catalogues that work in a similar way. In this way a clear layout is achieved.

The speedata Publisher always works with such a grid. Since every publication is different, there is no way to find a sensible default for it. By default the grid is set to a size of 1cm × 1cm. It applies to the page as well as all positioning frames and groups. You can display the grid with sp --grid or <Trace grid="yes"/> in the layout.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <SetGrid height="12pt" nx="10"/>
 <Trace grid="yes"/>
 <Pageformat width="8cm" height="4cm"/>

 <Record element="data">
 <PlaceObject column="3" row="2">
 <Textblock>
 <Paragraph>
 <Value>Hello world!</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>

</Layout>

results in

Simple grid

If you look closely, you will see that the first and then every fifth stroke is drawn a little darker. This helps to count grid cells if necessary. The red line shows the border of the page, in the default setting the borders are 1cm each.

Positioning objects in the grid

In the example above, you can see that the entries for row and column refer to the grid, the origin in the upper left corner has the coordinate 1,1. Besides the placement in grid coordinates, there is also the absolute placement: here, the object can always be positioned exactly at a certain position in the PDF. This is suitable, for example, for logos or background images that are to be displayed at a fixed position. These two variants cannot be combined within one output with <PlaceObject>: you have to choose one of the two variants.

<!-- grid -->
<PlaceObject row="4" column="5">
 <Image file="_samplea.pdf" width="5"/>
</PlaceObject>

<!-- absolute -->
<PlaceObject row="12mm" column="5cm">
 <Image file="_samplea.pdf" width="5"/>
</PlaceObject>

Grid-based output (top) and absolute output (bottom). For grid-based output, the specifications are coordinates in the page grid, where the upper left corner is position 1,1. For absolute positioning, the specification is measured from the upper left corner. As soon as one of the two specifications is a length specification, the absolute positioning is taken.

The line and column specifications always refer to the upper left-hand corner of the object, unless you specify with hreference or vreference that the specification should refer to the lower or right-hand corner. The objects align themselves to the upper and left edge of the first grid cell. Using halign and valign you can also align the object to the right or bottom:

<PlaceObject column="{sd:number-of-columns()}" row="1"
 hreference="right">
 <Image file="logo.pdf" width="2.5"/>
</PlaceObject>

<PlaceObject column="{sd:number-of-columns()}" row="4"
 hreference="right" halign="right">
 <Image file="logo.pdf" width="2.5"/>
</PlaceObject>

By specifying hreference="right", the column specification is not used for the left edge of the image, but for the right edge. If the width of the image does not correspond to a multiple of the raster width, as in this example, the alignment within the raster cell must also be corrected with halign="right" (right logo).

Defining the grid

The grid is set globally with the command <SetGrid>. For example:

<SetGrid height="12pt" width="5mm"/>

sets the grid height to 12 points and the width to 5 millimetres. In addition to the fixed values, there is also the possibility to set the number of grid cells horizontally and vertically:

<SetGrid nx="9" ny="9" />

This creates a so-called nine-division, which is often used in book design. It is also possible to define distances between the grid cells, as is common in newspaper typesetting, for example:

<SetGrid width="45mm" dx="3mm" height="12pt" />

If the grid does not fit completely into the type area, e.g. with a grid width of 3 centimeters and a page width of 10 centimeters, this leads to a conflict in the page layout. This causes the right or bottom margin to be shifted and does not match the values specified in the page type.

What is the grid needed for?

If you call sp with the --show-gridallocation option, you can see immediately what the grid is for. Occupied cells are marked internally, so that no other object can be placed in this area. At least not without an error message or the hint that no area should be kept free for it (allocate="no" in <PlaceObject>).

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <SetGrid height="12pt" nx="10"/>
 <Trace grid="yes" gridallocation="yes"/>
 <Pageformat width="8cm" height="4cm"/>

 <Record element="data">
 <PlaceObject column="3" row="2">
 <Textblock>
 <Paragraph>
 <Value>Hello world!</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>

</Layout>

Grid with grid allocation display switched on. The yellow area is internally marked as “allocated”.

Attempting to place an object in an already occupied area gives a warning.

If you add the lines

<PlaceObject column="1" row="1">
 <Image file="ocean.pdf" height="4"/>
</PlaceObject>

the following grid assignment results:

Double occupied grid. Areas that share (overlap) several objects are marked red.

and a warning:

...
PlaceObject: Image in row 1 and column 1, width=4, height=4 (page 1)
Warning: Conflict in grid
...

If you omit the specifications for column and row, the publisher will automatically look for the next free position.

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Trace grid="yes"/>

 <Record element="data">
 <PlaceObject>
 <Image width="4" file="_samplea.pdf"/>
 </PlaceObject>
 <PlaceObject>
 <Image width="4" file="_sampleb.pdf"/>
 </PlaceObject>
 </Record>
</Layout>

Objects automatically search for the next free space, unless otherwise specified.

Absolutely placed objects do not occupy areas in the grid by default. In this case allocate="no" is set. With allocate="yes" the behaviour can be set to the same as for objects placed in the grid.

Separate grids in groups

The following is an example of a grid within a group that differs from the global grid.
Without the explicit <Grid …​ /> specification, the grid is taken from the page.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <SetGrid nx="4" ny="4"/>
 <Trace grid="yes" gridallocation="yes" objects="yes"/>

 <Record element="data">
 <Group name="table">
 <Grid width="1cm" height="12pt"/>
 <Contents>
 <PlaceObject>
 <Table width="4" stretch="max">
 <Tr>
 <Td><Paragraph><Value>Cell 1/1</Value></Paragraph></Td>
 <Td><Paragraph><Value>Cell 2/1</Value></Paragraph></Td>
 </Tr>
 <Tr>
 <Td><Paragraph><Value>Cell 1/2</Value></Paragraph></Td>
 <Td><Paragraph><Value>Cell 2/2</Value></Paragraph></Td>
 </Tr>
 </Table>
 </PlaceObject>
 <PlaceObject row="4" column="2">
 <Image file="ocean.pdf" width="3"/>
 </PlaceObject>
 </Contents>
 </Group>

 <PlaceObject groupname="table"/>
 </Record>
</Layout>

The group has its own grid that is independent of the page grid.

Section of a page. The grid within the group is much finer than the coarse page grid.

Areas on the page (PositioningArea)

The pages can be divided into virtual areas. To do this, you specify frames in the page type:

<Pagetype name="page" test="true()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 <PositioningArea name="pagehead">
 <PositioningFrame width="19" height="2" row="1" column="1"/>
 </PositioningArea>
 <PositioningArea name="left">
 <PositioningFrame
 width="4"
 height="{sd:number-of-rows() - 3}"
 row="4"
 column="2"/>
 </PositioningArea>
 <PositioningArea name="text">
 <PositioningFrame
 width="10"
 height="{sd:number-of-rows() - 3}"
 row="4"
 column="8"/>
 </PositioningArea>
</Pagetype>

Three areas are defined here, which can be addressed with the attribute area="…​" when it comes to the output of objects or the movement of the cursor:

<Record element="data">
 <PlaceObject area="pagehead">
 <Textblock>
 <Paragraph>
 <Value>pagehead, height of the area: </Value>
 <Value select="sd:number-of-rows('pagehead')" />
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <PlaceObject area="left">
 <Textblock>
 <Paragraph>
 <Value>left, height: </Value>
 <Value select="sd:number-of-rows('left')" />
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <PlaceObject area="text">
 <Textblock>
 <Paragraph>
 <Value>text, width: </Value>
 <Value select="sd:number-of-columns('text')" />
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

The areas of the page are addressed with area="…​". Some layout functions allow you to specify an area.

Cursor

The cursor is a virtual marker that is moved in the grid after each output, unless it is explicitly prohibited (keepposition="yes" at <PlaceObject>). The selection is controlled separately for each area. I.e. an output in one area does not result in a change of the cursor in another area. If an object is output that extends to the right margin, the cursor automatically jumps to the next free line. The cursor can be moved line by line with <NextRow>. If you specify rows="n", the cursor is placed n rows lower. If you specify row="n", the cursor is placed in row n.

The following example illustrates the behavior of the cursor.

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Trace grid="yes"/>

 <Record element="data">
 ①
 <PlaceObject>
 <Box width="{sd:number-of-columns()}" height="1"/>
 </PlaceObject>
 <NextRow rows="1" />
 <PlaceObject>
 <Box width="{sd:number-of-columns()}" height="1"/>
 </PlaceObject>

 <NextRow rows="2" />

 <PlaceObject>
 <Box width="4" height="1"/>
 </PlaceObject>
 ②
 <NextRow rows="1" />
 <PlaceObject>
 <Box width="4" height="1"/>
 </PlaceObject>

 </Record>
</Layout>

	
The two objects cover the entire width. The cursor automatically jumps to the next line as soon as it is behind the right edge. The <NextRow> creates the free row.

	
The cursor is now in row 6 and column 5. The following row feed sets the cursor in row 7 and column 1.

The behavior of NextRow

Overflow of texts into the next frame

When outputting texts using the commands <Output>/<Text>, page breaks can occur in texts, as described in the section Texts with page break. This works not only for page boundaries, but also for areas on the pages, provided that they have the same name.

This page definition serves as an example:

<Pagetype name="page" test="true()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 <PositioningArea name="text">
 <PositioningFrame width="4" height="17" row="2" column="1"/>
 <PositioningFrame width="4" height="10" row="3" column="6"/>
 <PositioningFrame width="4" height="24" row="1" column="11"/>
 </PositioningArea>
</Pagetype>

The output is generated via <Output>:

<Output area="text">
 <Text>
 <Paragraph>
 <Value select="sd:dummytext(3)"/>
 </Paragraph>
 </Text>
</Output>

The text automatically flows into the next free area. If necessary, a page break is inserted.

Force a frame switch

You can also force a frame to change. With <NextFrame> and the specification of an area (area="…​") the cursor is placed in the top left corner of the next frame, if necessary a page break is inserted.

File organization

This section describes how the necessary files (layout, data, images and font files) must be organized, where they are stored, what they must be called, and so on.

When the Publisher starts, it reads the current (working) directory and all child directories and saves the file names in a list. As soon as a resource is loaded, this list is used to check whether a corresponding file exists. No distinction is made as to which directory the file is located in.

It follows from this:

	
If something changes in the file system during the run, the Publisher will not notice this.

	
It does not matter what the directories are called. The images can, but do not have to be stored in the directory with the name "images".

	
If the working directory is too large, the startup process is slow. A few thousand files in the working directory are usually no problem.

	
If there are duplicates in the file tree, a file is selected “at random”. E.g. data.xml in the main directory and in a subdirectory.

There are exceptions to the rule:

	
You can use sp --no-local to instruct the publisher not to search the working directory recursively.

	
With --extra-dir you can add a directory to be searched recursively.

	
With sp --systemfonts, font files are also searched in directories that are predefined by the system.

	
With sp --wd DIR the publisher changes to this directory before starting.

For a description of the parameters see the appendix Running the speedata publisher on the command line.

What names must the data file and the layout file have?

The speedata Publisher looks for the layout with the name layout.xml and the data file with the name data.xml. Both can be adjusted on the command line (--layout=XYZ and --data=XYZ) and in the configuration file (layout=XYZ and data=XYZ). See the appendices Running the speedata publisher on the command line and How to configure the speedata publisher.

Possible file organization in a directory. The name of the subdirectories (folders) is arbitrary.

Splitting layout sets of rules into individual files

You can split the layout ruleset into several files. There are two ways to merge the files. On the command line, you can use --extra-xml to specify one or more layout rulesets, which are also read in. Alternatively, you can use the mechanism via XInclude, here in the case of a font definition:

<Layout
 xmlns="urn:speedata.de:2009/publisher/en">

 <LoadFontfile name="DejaVuSerif" filename="DejaVuSerif.ttf" />
 ...

</Layout>

This file can then be included with

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en"
 xmlns:xi="http://www.w3.org/2001/XInclude"
 >

 <xi:include href="dejavu.xml"/>
 ...

</Layout>

The namespace for XInclude must be declared as above, otherwise there will be a syntax error in the XML file.

Splitting data into individual files

The data file can also be split into several files. XInclude is used for this.

<catalog xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="globalsettings.xml"/>
 <xi:include href="article0001.xml"/>
 <xi:include href="article0002.xml"/>
 ...
</catalog>

The namespace for XInclude must be declared in the root node (in the above example, 'catalog').

XInclude and XML schema

If the XInclude mechanism is used, it is possible that the XML editor will flag the <xi:include …​> statements as unknown.
To prevent this, the RELAX NG schema must be linked to the editor instead of the XML schema. See the chapter Associate XML editor with schema.

Hyphenation / language settings

Hyphenation is necessary in most Western languages to have an acceptable appearance for narrow texts. Hyphenation is an integral part of the line breaking algorithm, for example to avoid multiple hyphenations in consecutive lines.

Hyphenation is controlled by language in the Publisher and is pattern-based. The language can be set globally via <Options mainlanguage="…​"> or paragraphwise.

<Options mainlanguage="German" />

switches the entire document to German hyphenation patterns, while

<Paragraph language="German">
 <Value>Autobahn</Value>
</Paragraph>

changes the language for only one paragraph. The available languages are described in the command reference under <Options>.

Alternatively to the written out names like German, the language code can be used.
The two examples above can also be used as follows:

<Options mainlanguage="de" />

<Paragraph language="de">
 <Value>Autobahn</Value>
</Paragraph>

If you want to test if the words are hyphenated correctly, you can create small marks with <Trace hyphenation="yes" />.

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Options mainlanguage="German" />
 <Trace hyphenation="yes" />

 <Record element="data">
 <PlaceObject>
 <Textblock width="3">
 <Paragraph>
 <Value>Autobahn</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

results in the following:

Show hyphenation points in text

Via

<Hyphenation>er-go-no-mic</Hyphenation>

you can define hyphenation suggestions or exceptions for individual words. In this way, the words are then only hyphenated at the positions indicated by a hyphen. The language attribute can be used to specify the language for which the separation exception applies.

With optical margin alignment, which is described in the section Optical margin alignment, you can reduce the number of hyphenations in the document somewhat.

Turn off paragraph hyphenations

For single paragraphs you can switch off the automatic hyphenation by defining a text format with hyphenate="no".

<DefineTextformat name="nohyphen" hyphenate="no"/>

No words are hyphenated in paragraphs marked in this way. The use of text formats is described in a separate section.

The hyphenation character can also be changed using a text format:

<DefineTextformat name="dothyphen" hyphenchar="•"/>

Other character for word hyphenations

Use different languages within a paragraph

You can set the language for a textblock, a paragraph and you can even set the language for a piece of text by surrounding the text by and .

<Paragraph language="en">

 <Value>Also schön, Guido Heffels,
 nachfolgend meine Textempfehlung
 für das Blindtextbuch.
 </Value>

 <Value>A wonderful serenity has taken
 possession of my entire soul, like these sweet
 mornings of spring which I enjoy with my whole
 heart.
 </Value>

</Paragraph>

Allow hyphenations only on certain characters

A property of <Paragraph> allows to limit the characters where a line break may be inserted. This is often important for technical data where, for example, type designations in the form 12-345/AB occur and should not be hyphenated. In the following example, a line break may only be inserted after a slash:

<Paragraph allowbreak="/">
 <Value>https://download.speedata.de/publisher/development/</Value>
</Paragraph>

The default setting for allowbreak is “ -”, i.e. a break at a space or hyphen.

This is an experimental feature in the Publisher. It is likely to be associated with a text format in a future version.

Language settings for non-western languages

Some languages have special typesetting rules that do not affect hyphenation, but the appearance of the text.
So the characters can change their shape or position, depending on where they are in the word.
To use this feature, the following conditions must be met:

	
mode="harfbuzz" must be activated at <LoadFontfile>.

	
The language should be set correctly. If the language is not available in the list of supported languages, Other or -- (two dashes) must be used. If the language is not set correctly, layout errors might orccur.

	
The selected font must contain the appropriate characters.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en"
 version="4.1.7">

 <LoadFontfile name="NotoSansBengali-Regular"
 filename="NotoSansBengali-Regular.ttf"
 mode="harfbuzz" />
 <DefineFontfamily fontsize="10" leading="12" name="text">
 <Regular fontface="NotoSansBengali-Regular" />
 </DefineFontfamily>

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph language="Other">
 <Value>আমি</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

The language is recognized by the system when set to Other.

Right-to-left running text

If text is output that runs from right to left (e.g. Arabic), the direction of the paragraph must be specified with must be specified (direction="rtl").
Otherwise, the alignment may be wrong (the last line is left-aligned instead of right-aligned).

If the output text is not justified then start and end must be used for the alignment in text format and not 'leftaligned' and 'rightaligned'. start and end are based on the start position of the text and not on the orientation of the page (output area).

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en"
 version="4.1.16">

 <LoadFontfile
 name="Amiri-Regular"
 filename="amiri-regular.ttf"
 mode="harfbuzz" />
 <DefineFontfamily fontsize="10" leading="12" name="text">
 <Regular fontface="Amiri-Regular" />
 </DefineFontfamily>

 <Record element="data">
 <PlaceObject>
 <Textblock width="5">
 <Paragraph direction="rtl">
 <Value select="."/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

<data>المادة 1 يولد جميع الناس أحرارًا متساوين في الكرامة والحقوق.
وقد وهبوا عقلاً وضميرًا وعليهم أن يعامل بعضهم بعضًا بروح الإخاء.</data>

The text runs from right to left.

Mixed text (right-to-left and left-to-right)

If text is output that runs both from right to left (rtl) and from left to right (ltr), the paragraph must be divided into individual segments and the writing direction must be changed between the segments. This so-called “bidi algorithm” is built into the speedata Publisher
and is activated with bidi="yes":

<PlaceObject>
 <Textblock width="5">
 <Paragraph bidi="yes">
 <Value select="."/>
 </Paragraph>
 </Textblock>
</PlaceObject>

<data>العاشر ليونيكود (Unicode Conference)،
الذي سيعقد في 10-12 آذار 1997 مبدينة</data>

Here the text direction is calculated separately for each section. If bidi="yes" is specified, the first part is taken as the main direction of the paragraph, in this case the specification direction="rtl" is not necessary

Rules for mixed text

	
Set the direction attribute if it is clear in which context the text should appear. If it is empty or not set, the content of the text decides which direction the paragraph should have. This works well in most cases, but not, for example, with mixed text that starts with a “wrong” direction.

	
If in doubt, set the attribute bidi to yes. The only drawback is that the publishing run might be a bit slower. Other differences should not occur.

	
The language setting (language) should either contain the correct language, be empty or set to the language Other. The problem is that some language settings can cause an unwanted write direction.

	
For text alignment (alignment at DefineTextformat) you should use start and end instead of left or right. start and end are oriented to the direction for the paragraph.

	
The HarfBuzz-fontloader must be activated.

Using fonts

Embedding fonts in the common formats is very easy. The formats Type1 (files .pfb and .afm) as well as TrueType and OpenType (files .ttf and .otf) are supported.

To make fonts known and used by the publisher, two steps are necessary. The first step is to load a font file:

<LoadFontfile name="MinionRegular" filename="MinionPro-Regular.otf" />

This assigns the file name MinionPro-Regular.otf the internal name MinionRegular. In the second step, these internal names are then used to define families:

<DefineFontfamily name="textfont" fontsize="9" leading="11">
 <Regular fontface="MinionRegular"/>
 <Bold fontface="MinionBold"/>
 <Italic fontface="MinionItalic"/>
 <BoldItalic fontface="MinionBoldItalic"/>
</DefineFontfamily>

The last three cuts (bold, italic and bold italic) do not have to be specified if they are not used in the layout. fontsize is the font height in points, leading is the distance between two baselines.

Font size and line spacing

The font is used in different ways: in the commands <Textblock>, <Text>, <Paragraph>, <Table>, <NoBreak> and <Barcode>, a font can be specified with the attribute fontfamily, e.g. <Paragraph fontfamily="text font">. Temporarily you can switch to another family with the command <Fontface fontfamily="…​">:

<Paragraph>
 <Fontface fontfamily="title">
 <Value>Preface</Value>
 </Fontface>
 <Value> more text</Value>
</Paragraph>

Text markup in the layout rules

There are several ways to switch to the cuts bold, italic and bold-italic. The most direct one is to switch with the commands and <I>, these can also be nested within each other:

<PlaceObject>
 <Textblock fontfamily="textfont">
 <Paragraph>
 <Value>A wonderful </Value>
 <Value>serenity</Value>
 <Value> has taken possession </Value>
 <I><Value>of my</Value>
 <Value> </Value>
 <Value>entire soul,</Value>
 </I>
 <Value> like these sweet mornings.</Value>
 </Paragraph>
 </Textblock>
</PlaceObject>

Text markup in layout. Underline (not shown) is possible with the command <U>.

Text markup in the data

If there are markups in the data (e.g. as HTML tags), then this works in principle in exactly the same way:

<PlaceObject>
 <Textblock fontfamily="textfont">
 <Paragraph>
 <Value select="."/>
 </Paragraph>
 </Textblock>
</PlaceObject>

with the corresponding data:

<data>A wonderful serenity has taken possession
 <i>of my entire soul,</i> like these sweet
 mornings.</data>

The result is the same as above. The tags can also be written in capital letters in the data: instead of . Nesting is also allowed and again <u> is underlined.

If the data is not in well-formed XML but in HTML format for example, you can use the layout function sd:decode-html() to interpret it.

OpenType Features

The OpenType format knows so-called OpenType features, such as old style figures or small caps. Some of these features can be activated at <LoadFontfile>.

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <!-- Oldstyle figures / text figures -->
 <LoadFontfile
 name="MinionRegular-osf"
 filename="MinionPro-Regular.otf"
 oldstylefigures="yes" />

 <!-- Small caps -->
 <LoadFontfile
 name="MinionRegular-smcp"
 filename="MinionPro-Regular.otf"
 smallcaps="yes" />

 <DefineFontfamily name="osftext" fontsize="10" leading="12">
 <Regular fontface="MinionRegular-osf"/>
 </DefineFontfamily>

 <DefineFontfamily name="smcptext" fontsize="10" leading="12">
 <Regular fontface="MinionRegular-smcp"/>
 </DefineFontfamily>

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph fontfamily="osftext">
 <Value>Text with oldstyle figures 1234567890</Value>
 </Paragraph>
 <Paragraph fontfamily="smcptext">
 <Value>Text with small caps 1234567890</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

Text figures (above) often make reading the numbers more pleasant. Real small caps (below) differ significantly from mathematically reduced capital letters. The line width and proportions must be adjusted. Depending on the font used, smallcaps also switches to "old style figures".

Outline font

The font-outline attribute can be used to specify the line width for an outline font:

<PlaceObject>
 <Textblock>
 <Paragraph font-outline="0.3pt">
 <Value>Hello nice world</Value>
 </Paragraph>
 </Textblock>
</PlaceObject>

An outline font is created by specifying a line thickness with the font-outline attribute at Paragraph.

Harfbuzz

Since version 4 of speedata Publisher there is a new mode for loading font files: HarfBuzz.
It activates the library of the same name, which not only loads the font files, but is also responsible for the arrangement of characters in a word (text shaping).
This is not as important for western writing systems as for e.g. Arabic.
A side effect of the harfbuzz library is the extensive support for OpenType features.

Using the harfbuzz mode is as follows:

<LoadFontfile
 name="..."
 filename="..."
 mode="harfbuzz" />

The OpenType features can be set with the features attribute, for example

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en"
 >

 <LoadFontfile name="CrimsonPro-Regular"
 filename="CrimsonPro-Regular.ttf"
 mode="harfbuzz" />
 <LoadFontfile name="CrimsonPro-Regular-frac"
 filename="CrimsonPro-Regular.ttf"
 mode="harfbuzz"
 features="+frac" />

 <DefineFontfamily fontsize="10" leading="12" name="regular">
 <Regular fontface="CrimsonPro-Regular" />
 </DefineFontfamily>
 <DefineFontfamily fontsize="10" leading="12" name="frac">
 <Regular fontface="CrimsonPro-Regular-frac" />
 </DefineFontfamily>

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph fontfamily="regular">
 <Value>Use 1/4 cup of milk.</Value>
 </Paragraph>
 <Paragraph fontfamily="frac">
 <Value>Use 1/4 cup of milk.</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

Upper text without the frac feature, lower text with the feature.

A complete description of the OpenType features can be found on
https://docs.microsoft.com/en-us/typography/opentype/spec/featurelist.
The default features are the ones that are mentioned in the harfbuzz manual but without liga.

Optical margin alignment

With the parameter marginprotrusion (percentage) at the command <LoadFontfile> you can determine how far certain characters (comma, dot and hyphen) protrude into the right margin. This can be used to achieve an optically smoother margin in justified text:

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Options mainlanguage="German" />
 <LoadFontfile name="main"
 filename="MinionPro-Regular.otf"
 marginprotrusion="100" />

 <DefineFontfamily name="text" fontsize="10" leading="12">
 <Regular fontface="main"/>
 </DefineFontfamily>

 <Record element="data">
 <PlaceObject>
 <Textblock width="4">
 <Paragraph>
 <Value select="."/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

The associated data file (data.xml) is as follows:

<data>A wonderful serenity has taken possession of my entire
 soul, like these sweet mornings of spring which I enjoy
 with my whole heart. I am alone, and feel the charm of
 existence in this spot, which was created for the bliss of
 souls like mine. I am so happy, my dear friend, so
 absorbed in the exquisite sense of mere tranquil
 existence, that I neglect my talents.</data>

Left: Comma, period and hyphen protrude into the right margin. Right: without optical margin alignment.

In which directory must the font files be located?

The organization of the files, and thus the fonts, is described in the directory File Organization. With sp --systemfonts when calling the publisher, you can access the system-wide font files.

Tips and tricks

In order to save yourself work in defining fonts, you can use the command

$ sp list-fonts --xml

This will then list all font files found, together with a line that can be used directly in the layout.

$ sp list-fonts --xml
<LoadFontfile name="DejaVuSans-Bold"
 filename="DejaVuSans-Bold.ttf" />
<LoadFontfile name="DejaVuSans-BoldOblique"
 filename="DejaVuSans-BoldOblique.ttf" />
<LoadFontfile name="DejaVuSans-ExtraLight"
 filename="DejaVuSans-ExtraLight.ttf" />
...

If no font is specified for a paragraph or text block (etc.), the system uses the text font family, which is also predefined in the Publisher and can be overwritten. See the Preferences in the Publisher appendix.

Missing characters and replacement fonts

The character sets in the font files are usually very limited. For example, the speedata Publisher is delivered with the free font "TeXGyreHeros" (a very good Helvetica clone). However, the font file only contains characters that cover western languages, but not, for example, Greek, Arabic, Chinese etc. Also the whole Unicode special characters like U+2685 DIE FACE-6 (⚅) are not included. If a character is requested that is not contained in the font, an error message is displayed.

Error: Glyph f1c7 (hex) is missing from the font "TeXGyreHeros-Regular"

This error can be suppressed with the command <Options>:

<Options reportmissingglyphs="no"/>

Alternatively, you can also specify a replacement font at <LoadFontfile>, which will be searched as soon as a character is not found:

<LoadFontfile name="helvetica" filename="texgyreheros-regular.otf">
 <Fallback filename="fontawesome-webfont.ttf" />
 <Fallback filename="line-awesome.ttf" />
</LoadFontfile>

First the font texgyreheros-regular.otf is searched, then fontawesome-webfont.ttf and finally line-awesome.ttf.

Aliases

There is a command to add an alternate name for an existing font name to the list of known font names:

<DefineFontalias existing="..." alias="..."/>

The commands

<LoadFontfile name="DejaVuSerif"
 filename="DejaVuSerif.ttf" />
<LoadFontfile name="DejaVuSerif-Bold"
 filename="DejaVuSerif-Bold.ttf" />
<LoadFontfile name="DejaVuSerif-BoldItalic"
 filename="DejaVuSerif-BoldItalic.ttf" />
<LoadFontfile name="DejaVuSerif-Italic"
 filename="DejaVuSerif-Italic.ttf" />

<DefineFontalias existing="DejaVuSerif" alias="serif"/>
<DefineFontalias existing="DejaVuSerif-Bold" alias="serif-bold"/>
<DefineFontalias existing="DejaVuSerif-Italic" alias="serif-italic"/>
<DefineFontalias existing="DejaVuSerif-BoldItalic"
 alias="serif-bolditalic"/>

now allow to define font families in general as follows:

<DefineFontfamily name="title" fontsize="15" leading="17">
 <Regular fontface="serif"/>
 <Bold fontface="serif-bold"/>
 <BoldItalic fontface="serif-bolditalic"/>
 <Italic fontface="serif-italic"/>
</DefineFontfamily>

i.e. independent of the font actually used. With the options described in the section Splitting layout sets of rules into individual files, you can now swap the font definition into a separate file and, if necessary, quickly choose between different fonts by including the desired files.

Text formats

Text formats are used to control the paragraphs. You can use them to control various things like text indents, text alignment, orphan and widow lines, pagination and more.

The individual parameters are described in the reference under <DefineTextformat>.

The text format called text is predefined in the Publisher and is used in all places where no other text format is specified. It is defined as follows:

<DefineTextformat name="text" alignment="justified"/>

This will output all texts in justified text and with hyphenation, without indentation and without spaces at the top and bottom, as long as

	
the format text is not redefined or

	
another text format is specified at <Paragraph> or <Textblock> (the attribute for this is called text format).

Page breaks between texts

Page breaks, for example after a heading, are undesirable. To prevent page breaks at these points, the text format property break-below can be switched off:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">
 <Pageformat width="100mm" height="70mm"/>
 <Trace textformat="yes"/>

 <DefineTextformat name="keeptogether" break-below="no"/>

 <DefineFontfamily name="h1" fontsize="18" leading="20">
 <Regular fontface="sans-bold"/>
 </DefineFontfamily>

 <Record element="data">
 <Output>
 <Text>
 <Paragraph fontfamily="h1" textformat="keeptogether">
 <Value>A Title</Value>
 </Paragraph>
 <Paragraph>
 <Value select="sd:dummytext()"/>
 </Paragraph>
 </Text>
 </Output>
 </Record>
</Layout>

To prevent a page break from being inserted between the heading and the text, you need to adjust the text format of the heading.

Output of a heading. The text format with the break-below property prevents wrapping under the heading.

However, the break-below="no" property is only taken into account within a text output (<Output>). You can insert a page break between two text outputs, but this cannot be prevented. In order to output a text in one piece nevertheless, which first has to be assembled from the data, one stores the individual contents in variables and then outputs them in one piece.

<Record element="data">
 <SetVariable variable="mytitle">
 <Paragraph fontfamily="h1" textformat="keeptogether">
 <Value>A Title</Value>
 </Paragraph>
 </SetVariable>

 <SetVariable variable="mytext">
 <Paragraph>
 <Value select="sd:dummytext()"/>
 </Paragraph>
 </SetVariable>

 <Output>
 <Text>
 <Copy-of select="$mytitle"/>
 <Copy-of select="$mytext"/>
 </Text>
 </Output>
</Record>

With variables and <Copy-of> you can compose texts and output them in one piece.

Tracing

The command <Trace textformat="yes"/> activates "tooltips" in the PDF above the texts that output the text format used there.

Tooltip with the text format

Text formatting

<Textblock> and <Text> contain one or more paragraphs (command <Paragraph>). The actual texts are encapsulated there within <Value>. There are numerous possibilities to influence the formatting of the texts. The switches for the font styles were introduced in Include Fonts. With a similar functionality there are the following commands:

	<Sub> and <Sup>
	Subscript and superscript text.

	<Fontface>
	Temporarily switches to a different font.

	<Color>
	Outputs the enclosed text in a different color.

	<A>
	Creates a hyperlink.

	<HSpace>
	Inserts an expandable blank space (with or without dots).

	<U>
	Underline.

<PlaceObject>
 <Textblock width="11">
 <Paragraph>
 <Value>Text</Value>
 _{<Value>sub</Value>}
 <Value> </Value>
 ^{<Value>sup</Value>}
 <Value> </Value>
 <U><Value>underline</Value></U>
 <Value> </Value>
 <Color name="green"><Value>green</Value></Color>
 <Value> </Value>

 <Value>link to the homepage</Value>

 <HSpace leader=" . "/>
 <Value>right margin.</Value>
 </Paragraph>
 </Textblock>
</PlaceObject>

Various text markups

Space characters

The following Unicode space characters are interpreted by the speedata Publisher:

	Code	Name	Example	Width
	 	NO-BREAK SPACE	1000 × 500	Variable
	 	EN SPACE	1000 × 500	1 em
	 	EM SPACE	1000 × 500	1/2 em
	 	THREE-PER-EM SPACE	1000 × 500	1/3 em
	 	FOUR-PER-EM SPACE	1000 × 500	1/4em
	 	SIX-PER-EM SPACE	1000 × 500	1/6 em
	 	THIN SPACE	1000 × 500	1/8 em
	 	HAIR SPACE	1000 × 500	1/24 em
	​	ZERO WIDTH SPACE	1000​×​500	without width
	(space)	SPACE	1000 × 500	Variable

Enumeration lists

Instead of a paragraph, an enumeration list can also appear. This is specified with or for an ordered list and an unordered list. The individual points must be marked with .

<PlaceObject>
 <Textblock>

 <Value>One</Value>
 <Value>Two</Value>

 <Value>One</Value>
 <Value>Two</Value>

 </Textblock>
</PlaceObject>

This feature is not really robust yet. The lists cannot (currently) be nested. It is recommended to check if the lists are output correctly.

Prevent text wrapping

Some headings and proper names should not be broken. There is a command <NoBreak> for this purpose, which suppresses wrapping in various ways. A somewhat exaggerated example is:

<PlaceObject>
 <Textblock width="10cm">
 <Paragraph>
 <Value>A wonderful serenity has taken possession </Value>
 <NoBreak><Value>of my entire soul, like these sweet mornings...</Value></NoBreak>
 </Paragraph>
 </Textblock>
</PlaceObject>

The default setting for NoBreak is that the part must be connected.

Alternatively, you can reduce the font size by specifying the maximum width or shorten the text with omission points.

<Textblock width="10cm">
 <Paragraph>
 <NoBreak maxwidth="10" reduce="cut" text="...">
 <Value>A wonderful serenity has taken possession of my entire soul, like these sweet mornings...</Value>
 </NoBreak>
 </Paragraph>
</Textblock>

Here the text is cut off and filled with the specified text.

Break URLs

The command <URL> is used to make it easier to break URLs. You may wrap mainly at slashes (/), in addition no hyphens are inserted. No hyperlink is created, the command <A> is responsible for this.

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <SetGrid nx="40" ny="10"/>
 <Trace grid="yes"/>
 <Pageformat width="90mm" height="5cm"/>
 <Record element="data">
 <PlaceObject>
 <Textblock width="35">
 <Paragraph>
 <URL><Value>https://github.com/speedata/publisher/issues</Value></URL>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

results in

Colors

The output of colors in speedata Publisher is very simple. Usually one specification for the object to be output is sufficient:

<PlaceObject column="4" row="4">
 <Circle
 radiusx="2"
 background-color="deeppink"
 framecolor="mediumaquamarine"
 rulewidth="8pt"/>
</PlaceObject>

All CSS4 colors are predefined, see the list at <DefineColor>.

Not every color combination is beautiful

Color definitions

Colors can be assigned to a name with <DefineColor> and then addressed under that name:

<DefineColor name="logocolor" model="cmyk" c="0" m="18" y="90" k="2" />
<PlaceObject>
 <Box height="4" width="3" background-color="logocolor" />
</PlaceObject>

The values are between 0 (no color application) and 100 or 255 (full color application). The permitted attributes can be found in the following table:

	Color space	Attributes	Values
	cmyk	c, m, y, k	0–100 (0,0,0,0 = white, 0,0,0,100 = black)
	rgb	r, g, b	0–100 (0,0,0 = black, 100,100,100 = white)
	RGB	r, g, b	0–255 (0,0,0 = black, 255,255,255 = white)
	gray	g	0–100 (0 = black, 100 = white)

Spot colors

Spot colors are colors that are addressed separately in the printer.
They are unknown to the PDF display program and must be approximated for the screen output.
For many printing colors such as Pantone or HKS, these values are already stored in the Publisher, but they can or must be defined separately for unknown spot colors.

In the following case, the spot color is already known and can be used without CMYK values:

<DefineColor name="logocolor" model="spotcolor"
 colorname="PANTONE 116 C" />

<Record element="data">
 <PlaceObject>
 <Box width="5" height="2" background-color="logocolor"/>
 </PlaceObject>
</Record>

Various spot colors are predefined in the Publisher, such as the Pantone 116 color.

In the next example, the spot color speedatagreen is used and the CMYK replacement value is defined for the PDF display program:

<DefineColor
 name="mycolor"
 model="spotcolor"
 colorname="speedatagreen"
 c="56" m="7" y="98" k="21" />

Here a color is defined which is addressed in the Publisher with the output commands under the name mycolor. In the PDF this color is called speedatagreen and in the output it appears in a dark green.

The new color appears in the PDF as a separate color channel

Color values similar to HTML/CSS

HTML and CSS like colors can be used directly:

<PlaceObject allocate="no" column="3">
 <Box height="4" width="5" background-color="#FFC72C" />
</PlaceObject>

The colors can not only be written as hex values (three or six digits), but also as rgb(…​) such as rgb(255, 19, 147). These values can also be used with <DefineColor>:

<DefineColor name="myred" value="rgb(255,0,0)" />

Transparency

Color values can be specified with an alpha channel that specifies the color intensity in the range 0-100, where 100 is full coverage and 0 does not represent the color at all. HTML specifications like rgb(…​) can specify the opacity as a fourth parameter as a value from 0-1. Transparency may not work with all graphic objects. If you encounter a problem, please don’t hesitate to file a bug report.

Programming

Certainly the most important feature of the Publisher is the ability to implement very flexible layout requirements. This is mainly achieved by the built-in programming language in connection with the query options of the Publisher.

The program execution runs simultaneously with the creation of the PDF. Therefore, the speedata Publisher can react very flexibly to the input data. Queries such as “Is there still enough space for this object?” are thus possible. This distinguishes the Publisher from other software for creating PDF files.
Basic programming knowledge is required to use the full functionality of the Publisher. The programming language has been kept as simple as possible to maintain the readability of the layout.

Variables

All variables are globally visible. This means that a variable never becomes invalid. Here’s an example:

<data>
 <article number="1" />
 <article number="2" />
 <article number="3" />
</data>

Data file (data.xml)

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <ProcessNode select="article"/>
 <Message select="$nr"/>
 </Record>

 <Record element="article">
 <SetVariable variable="nr" select="@number"/>
 </Record>

</Layout>

And the corresponding layout file (layout.xml). The output of the command <Message> is 3. If the variable nr was declared with local visibility, it could not be read in the data element.

The global visibility is necessary because the program execution in the layout sometimes “jumps back and forth”. At the end of the page the content of <AtPageShipout> is executed in the current page type. It must also be possible to access the variables there.

In variables not only simple values can be stored, but also complex XML sections:

<Record element="data">
 <SetVariable variable="foo">
 <Paragraph>
 <Value>Hello world!</Value>
 </Paragraph>
 </SetVariable>

 <PlaceObject>
 <Textblock>
 <Copy-of select="$foo"/>
 </Textblock>
 </PlaceObject>
</Record>

Results in the expected issue of "Hello world!". A use case is to store table width declarations:

<SetVariable variable="tablecolumns">
 <Columns>
 <Column width="1cm"/>
 <Column width="4mm"/>
 <Column width="1cm"/>
 </Columns>
</SetVariable>

and then use them in several tables:

<PlaceObject>
 <Table>
 <Copy-of select="$tablecolumns"/>
 <Tr>
 ..
 </Tr>
 </Table>
</PlaceObject>

The one-time definition and reuse saves typing work and reduces the sources of error.

Execution time

The contents of variables containing child elements are evaluated immediately. I.e. in the following case

<SetVariable variable="tmp">
 <Paragraph><Value select="$greeting"/></Paragraph>
</SetVariable>

the variable greeting must already be defined.
Subsequent modification of the output in the paragraph does not happen.

It follows that the variables must not contain any output commands, such as <PlaceObject> or <ClearPage>, since these would take effect immediately.

There is an option to defer this evaluation time to the application at <Copy-of> (execute="later"):

<SetVariable variable="tmp" execute="later">
 <Paragraph><Value select="$greeting"/></Paragraph>
</SetVariable>

<SetVariable variable="greeting" select="'Hello User'"/>

<PlaceObject>
 <Textblock>
 <Copy-of select="$tmp" />
 </Textblock>
</PlaceObject>

Here, only when <Copy-of> is used, the contents of $tmp are evaluated, then output.
This also works with output commands:

<SetVariable variable="tmp" execute="later">
 <PlaceObject>
 <Textblock>
 <Paragraph><Value select="$greeting"/></Paragraph>
 </Textblock>
 </PlaceObject>
 <ClearPage />
 <PlaceObject>
 <Textblock>
 <Paragraph><Value>Hello user</Value></Paragraph>
 </Textblock>
 </PlaceObject>
</SetVariable>

<SetVariable variable="greeting" select="'Hello User'"/>

<Copy-of select="$tmp" />

generates twice the output 'Hello User' on a separate page.

Copy of

<Copy-of> was already used before. This copies the contents of the variable to the current position. The contents of the variables remain unchanged during copying.

variable =
 Copy-of variable
 new value

Pseudo code. With Copy-of you insert the content of the variable at this position. The content can also be complex XML structures like paragraphs.

This appends the new value to the previous ones.

<SetVariable variable="chapter">
 <Copy-of select="$chapter"/>
 <Element name="entry">
 <Attribute name="chaptername" select="@name"/>
 <Attribute name="page" select="sd:current-page()"/>
 </Element>
</SetVariable>

An example of copy of in practice is the assembly of XML structures with which information can be stored. This example is described in detail in the Cookbook, there in the section Create directories (XML structure).

If-then-else

In XPath you can perform simple if-then queries. The syntax for this is if (condition) then …​ else …​:

<PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="
 if (sd:odd(sd:current-page()))
 then 'recto' else 'verso'"/>
 </Paragraph>
 </Textblock>
</PlaceObject>

In XPath simple if-then queries can be used.

Case distinctions

Case distinctions correspond to the construction switch/case from C-like programming languages. They are applied in the Publisher as follows:

<Switch>
 <Case test="$i = 1">
 ...
 </Case>
 <Case test="$i = 2">
 ...
 </Case>
 ...
 <Otherwise>
 ...
 </Otherwise>
</Switch>

All commands within the first possible <Case> case are processed if the condition in test applies there. In test, an XPath expression is expected that returns true() or false(), like $i = 1, and if no case occurs, the contents of the optional <Otherwise> section will be executed.

Loops

There are various loops in the speedata Publisher. The simple variant is <Loop>:

<Loop select="10">
 ...
</Loop>

This loop is run through 10 times.

This command executes the enclosed commands as many times as the expression in select results in. The loop counter is stored in the variable _loopcounter, unless otherwise set by variable="…​".

Besides the simple loop there are also loops with conditions:

<Record element="data">
 <SetVariable variable="i" select="1"/>
 <While test="$i <= 4">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="$i"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <SetVariable variable="i" select="$i + 1"/>
 </While>
</Record>

The while loop executes the enclosed commands as long as the condition is "true". The numbers 1 to 4 are output.

The expression $i <= 4 must be read as $i <= 4, because the opening angle bracket at this point in the XML is a syntax error. The loop above is executed as often as the content of the variable i is less than or equal to 4. Don’t forget to increase the variable as well, otherwise an endless loop is created.

In addition to the while loop, there is also the until loop, which works in the same way:

<Record element="data">
 <SetVariable variable="i" select="1"/>
 <Until test="$i <= 4">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="$i"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <SetVariable variable="i" select="$i + 1"/>
 </Until>
</Record>

Since the until loop is executed until the condition is true, only the number 1 is output.

Functions

It is possible to define functions with the new XPath module:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en"
 xmlns:fn="mynamespace">

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="fn:add(3,4)" />
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>

 <Function name="fn:add">
 <Param name="a" />
 <Param name="b" />
 <Value select="$a + $b" />
 </Function>
</Layout>

The functions can also contain more complex expressions:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en"
 xmlns:fn="mynamespace">

 <Record element="data">
 <Value select="fn:chapter('First chapter')" />
 </Record>

 <Function name="fn:chapter">
 <Param name="chaptername" />
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="$chaptername"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Function>
</Layout>

The namespace for the function must be defined in the root element (here: xmlns:fn="…​"). Variables defined in the function remain local, i.e. are not visible in other program parts.

Data Structures

The speedata Publisher does not offer direct support for data structures such as arrays (fields) or dictionaries (hashes or dictionaries). These can be simulated using variables. The field a1, a2, …​, ai could be filled as follows:

<SetVariable variable="{ concat('a',1) }" select="'Value for a1'"/>
<SetVariable variable="{ concat('a',2) }" select="'Value for a2'"/>
...

Of course, a1 could also be specified directly as the variable name. In this example, both the prefix and the suffix could be created dynamically:

<SetVariable variable="prefix" select="'a'" />
<SetVariable variable="{ concat($prefix,1) }" select="'Value for a1'"/>
<SetVariable variable="{ concat($prefix,2) }" select="'Value for a2'"/>
...

The read access goes via sd:variable(…​):

<SetVariable variable="prefix" select="'a'" />
<Message select="sd:variable($prefix,1)"/>
<Message select="sd:variable($prefix,2)"/>
...

The function sd:variable() concatenates all arguments as a string and takes the result as variable name.

Image inclusion

Inserting images into the PDF is very easy, a short command is enough:

<Record element="data">
 <PlaceObject>
 <Image file="_samplea.pdf" width="5cm"/>
 </PlaceObject>
</Record>

The image _samplea.pdf is (like _sampleb.pdf) part of the Publisher and can be used for testing purposes. As image formats PDF, PNG and JPEG are possible. Other formats must be converted into one of these formats before processing. If the program inkscape is installed, it is used to automatically convert SVG files to PDF (check the section about the configuration for setting the command line parameters for inkscape). The format that causes the least problems in practice is PDF. Here, color profiles can also be embedded.

The images are not changed during processing in the Publisher, i.e. they retain their original (file) size, among other things. With very large images, the processing speed is lower and the size of the resulting PDF file naturally increases. Therefore it may be worthwhile to have special versions with smaller file sizes available for processing.

Width and height of the images

If you include images, it is always useful to include a size specification. Otherwise the natural size of the image is taken. What the natural size is, is not always clear. Usually there is a DPI specification in the image file. This is often set arbitrarily by the image processing program. For example, if it says 72 DPI, a 720 pixel wide image is 10 inches wide; at 300 DPI, it is only 2.4 inches wide.

Since the specification cannot be relied upon, size specifications are required for the output. This can be either the desired height or width of the image, or both together. In the example above, the image has a width of five centimeters. The specification can also be made as a number of grid cells. Specifying width="100%" means that the entire available width should be used (currently other percentages are not supported). The specification auto is like omitting the specification and is only available for CSS compatibility.

If both proportions are specified (width and height), there are two modes: keep aspect ratio (clip="yes") or stretch or shrink (clip="no") the output.

<PlaceObject>
 <Image file="ocean.pdf" width="10" height="3" clip="no"/>
</PlaceObject>

The image is stretched horizontally.

If clip is set to 'no', the image is distorted.

With clip="yes" the image is cropped so that the maximum dimensions are taken on one side.

<PlaceObject>
 <Image file="ocean.pdf" width="10" height="3" clip="yes"/>
</PlaceObject>

If clip is set to 'yes', only a section is shown.

The size of images can be determined with the two XPath functions sd:imagewidth(<filename>) and sd:imageheight(<filename>). The result is in grid cells. Caution, here the natural size is taken, which may be without significance (see above).

Maximum height and width, minimum height and width

To use the natural size, but specify restrictions, there are four combinations of min/max and width/height. The image in the following example will be no wider than 10 grid cells and no higher than 3. The aspect ratio is preserved:

<PlaceObject>
 <Image file="forest.jpg" maxwidth="10" maxheight="3" />
</PlaceObject>

The image is limited to the height of three grid cells.

If the natural image size is smaller than the given maxwidth and maxheight, you can set the attribute stretch to yes to increase the size of the image until one of the given constraints are reached.

Rotating images

With the rotate attribute you can rotate images in 90 degree steps (positive values: clockwise). The following example rotates an image 90 degrees counterclockwise if it is a portrait image. With the XPath command sd:aspectratio(<filename>) you can determine the aspect ratio of an image. If it is greater than 1, then it is a landscape image.

<data>

</data>

Data

<Layout xmlns:sd="urn:speedata:2009/publisher/functions/en"
 xmlns="urn:speedata.de:2009/publisher/en">

 <Record element="data">
 <ForAll select="img">
 <PlaceObject>
 <Image file="{@file}" width="5"
 rotate="{if (sd:aspectratio(@file) < 1) then '-90' else '0'}"/>
 </PlaceObject>
 </ForAll>
 </Record>
</Layout>

The image is rotated 90 degrees if it is a portrait image.

The second image is rotated by 90° because it is in portrait format.

The curly brackets at file and rotate mean that the system jumps to XPath mode to evaluate the XPath expressions (access to the file attribute and the if-then query). See the XPath and Layout Functions (new XPath module) for more information.

Note: if the image in the argument of sd:aspectratio() is not available in the filesystem, the value is taken from the placeholder image (chapter Image not found?). To check if an image is available at all, you can use the command sd:file-exists(<filename>).

Location of the image files

Usually the images are stored in the file system or in a DAM (digital asset management). In the file system they can be addressed either with an absolute path:

<Image file="file:///path/to/the/image.pdf" />

or as a file in one of the subdirectories of the search path, as in the examples above. For example, the images can be located in the subdirectory images. See the section on File organization.

The images can also be loaded from a web server using http(s) protocol. The syntax is analogous to the absolute path, for example:

<Layout xmlns="urn:speedata.de:2009/publisher/en" >

 <Record element="data">
 <PlaceObject>
 <Image file="http://placekitten.com/g/400/300" width="5"/>
 </PlaceObject>
 </Record>
</Layout>

The images that are loaded via http and https are cached on the hard disk. With each request, the system checks whether the image is still up-to-date and, if necessary, does not download it. If the image is deleted on the server, it is also deleted in the local system.

With sp --cache=fast you can use the fast caching method, which downloads the image from the server only once and then does not check if it is still up-to-date.

The sp clearcache command deletes the cache.

The location of the image cache can be controlled either by tempdir (command line and configuration file) or by the imagecache key in the configuration file (not on the command line).

Image not found?

What happens if an image is not found? The normal behavior is to output an error message and a placeholder image indicating the missing image:

<PlaceObject>
 <Image file="doesnotexist" width="5"/>
</PlaceObject>

It should be immediately obvious that the image file was not found.

Another possibility is to use fallback to determine a placeholder image yourself:

<PlaceObject>
 <Image file="doesnotexist" fallback="......" width="5"/>
</PlaceObject>

You can also set whether it is an error when a placeholder image is selected or only a warning.

<Options imagenotfound="error"/>

or warning for a warning.

Special features for PDF files

PDF files have some peculiarities: they can contain several pages and the individual pages have different boxes that mark the visible area and other areas. Some of the boxes are important for printing, some for viewing in the PDF viewer. The box that is to be displayed with the specified sizes is determined with the visiblebox attribute:

<Image file="page.pdf" visiblebox="artbox" width="210mm" height="297mm" />

means that the "artbox" is displayed in the size 210mm × 297mm

The page attribute is also described in the section Embed multipage PDF files. It is used to select the page when a PDF file is embedded. With sd:number-of-pages('filename') it can be determined how many pages a PDF file contains.

Specifying the page for layout functions

Some layout functions (sd:aspectratio(), sd:imageheight(), and sd:imagewidth()) access image files.
In the case of a PDF file, the file name can be specified next to the optional page number and desired PDF box.

Example: sd:aspectratio('ocean.pdf',3,'mediabox')

If no box is specified, the cropbox is used. Possible values for the box specification: artbox, cropbox, trimbox, mediabox and bleedbox.

External Conversion Tools

The Publisher usually only processes PDF, PNG and JPEG files. In order to use other formats, you have to convert them into one of the three formats. This can be done in advance, but also during the runtime of the Publisher.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <PlaceObject>
 <!-- tiff can only be used with an external converter -->
 <Image file="rhslogo.tiff"/>
 </PlaceObject>
 </Record>
</Layout>

To use the conversion, you have to enter the program calls in the configuration file. Here the program convert from ImageMagick is used:

imagehandler="tiffimage:(convert %%input%% %%output%%.pdf)"
extensionhandler="tiff:tiffimage"

The file name extension .tiff is assigned to the handler tiffimage (line 2). In the first line, the handler tiffimage is assigned to the program convert %%input%% %%output%%%.pdf, whereby the file names are replaced at runtime. If the file names contain spaces, you need to use double quotes (without backslash or other escape characters before):

imagehandler="tiffimage:("/path/with space/convert" "%%input%%" "%%output%%.pdf")"

Images from textual descriptions

There are countless picture description languages in which pictures are not drawn or painted with an external program, but are described textually. For example “draw a square with an edge length of 4cm” or “create a pie chart with the following values: …​”. These graphics are then converted from the description language into various formats, usually as PNG or PDF. With the Publisher it is possible to embed such descriptions since version 3.9.1:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <PlaceObject>
 <!-- we need to specify the imagetype -->
 <Image width="7cm" imagetype="mermaid" >
 <Value>sequenceDiagram
 participant Alice
 participant Bob
 Alice->>John: Hello John, how are you?
 loop Healthcheck
 John->>John: Fight against hypochondria
 end
 Note right of John: Rational thoughts
prevail!
 John-->>Alice: Great!
 John->>Bob: How about you?
 Bob-->>John: Jolly good!
 </Value>
 </Image>
 </PlaceObject>
 </Record>
</Layout>

Necessary is of course the configuration how the external converter is called. This works similar to the TIFF example in the previous section:

imagehandler="mermaid:(/usr/bin/mmdc -i %%input%% -o %%output%%.pdf)"

The result is a sequence diagram, created by mermaid and converted to PDF.

Of course it is also possible to extract the image description from the data. For this purpose the image command must be structured as follows.

<PlaceObject>
 <Image width="7cm" imagetype="mermaid" >
 <Value select="imagedata" />
 </Image>
</PlaceObject>

MetaPost Images

There is an extra chapter for MetaPost graphics. Here is shown how to include these images.

	
As an image with the suffix .mp:

<Image file="myfile.mp" />

	
A textual description of the type metapost:

<Image width="7cm" imagetype="metapost">
 <Value>....</Value>
</Image>

	
As a reference at the commands within the master page (AtPageCreation, AtPageShipout), with Td and boxes (Box).

See also the chapter on MetaPost and the examples at the examples repository.

Image size and resolution

Large image files also generate large PDF files when they are included, regardless of how wide and high they are displayed in the PDF.
If you want to limit the resolution (and therefore the file size), you can achieve this with the dpi option at PDFOptions.
DPI stands for dots per inch and is a unit of measurement for pixel density.
The lower the number, the “worse” the image looks.
By limiting the resolution, you can sometimes obtain much smaller files.

Example: if an image with a width of 720 pixels is to be displayed on a paper width of 1 inch, the resolution in the PDF would be 720 dpi.
As a rule, such a high resolution is not necessary.
Depending on the application (print/online viewing), a resolution of 300 dpi or 120 dpi may be sufficient, for example.

Other parameters

	
You can use the padding-* specifications to define how much distance the image should have from the corresponding border.

	
With dpiwarn you can issue a warning if the actual number of pixels per inch is less than the default.

Tables

The table model used in the Publisher is basically the same as that of HTML.

Basic structure of a table

The structure of a table looks like this:

<PlaceObject>
 <Table>
 <Tr>
 <Td>...</Td>
 <Td>...</Td>
 </Tr>
 <Tr>
 <Td>...</Td>
 <Td>...</Td>
 </Tr>
 </Table>
</PlaceObject>

<Tr> stands for tablerow and <Td> for tabledata. Tables are always structured line by line. Each row must contain the same number of columns, otherwise the Publisher issues an error message. The number of rows, however, is arbitrary.

The width of the table is determined by the contents. If stretch="no" (default) is specified for the <Table> command, the table will only take up the minimum width. If stretch="max" is specified, the full specified width (or the maximum available space) is used.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">
 <Trace grid="no" objects="yes"/>

 <Record element="data">
 <PlaceObject>
 <Table padding="2mm" stretch="no" >
 <Tr>
 <Td>
 <Paragraph><Value>Row 1 / Column 1</Value></Paragraph>
 </Td>
 <Td>
 <Paragraph><Value>Row 1 / Column 2</Value></Paragraph>
 </Td>
 </Tr>
 <Tr>
 <Td>
 <Paragraph><Value>Row 2 / Column 1</Value></Paragraph>
 </Td>
 <Td>
 <Paragraph><Value>Row 2 / Column 2</Value></Paragraph>
 </Td>
 </Tr>
 </Table>
 </PlaceObject>
 </Record>
</Layout>

A complete layout for a table.

If stretch="no" (or omit the stretch attribute), the table is only as wide as necessary (above). If you specify stretch="max" for the table, the entire width specified is used. The default setting for the width is the page width (bottom).

There are some settings that apply to the entire table, such as the font, inner spacing, line and column spacing. These are described in the appendix in the reference for the <Table> command.

Table cells and table rows, lines in tables

Statements in table rows (<Tr>) determine properties for all cells in that row, provided they are not overwritten in the cell itself. For example, align and valign specify the horizontal and vertical alignment of cells. That is, in the line

<Tr align="left">
 <Td>...</Td>
 <Td>...</Td>
 <Td align="right">...</Td>
</Tr>

all columns except the last have the alignment "left-aligned".

You can also specify the background color for the individual columns in the line (background-color). You can also specify the minimum height (minheight, specified in grid cells or a dimension) and the space above the cell, provided it does not follow a page break.

The table cells (<Td>) have extensive formatting options. For example, the padding for each of the four sides can be defined individually. The cell border on each page can also differ in thickness and color. The cell border always lies within a table, with the exception that the borders "overlap" with adjacent cells and the border-collapse option activated in <Table>. The alignment of the table contents can be defined using the parameters valign (vertical) and align (horizontal).

Cells can have different contents, even mixed:

	
paragraphs (paragraph, block element)

	
tables (table, block element)

	
images (Image, Inline Element)

	
barcodes (barcode, inline element)

	
box (box, block element)

	
multiple objects (overlay, see below, inline element)

	
vertical distances (Vspace, see below, block element)

	
frame (frame, block element)

Table cells contain horizontal objects (inline elements) and vertical objects (block elements). This refers to the arrangement within the table cell:

<PlaceObject>
 <Table width="8" stretch="max">
 <Tr align="center">
 <Td>
 <Image file="ocean.pdf" width="2"/>
 <Paragraph textformat="justified">
 <Value select="sd:dummytext()"/>
 </Paragraph>
 <Box width="2" height="1" background-color="green"/>
 </Td>
 </Tr>
 </Table>
</PlaceObject>

A table with inline and block elements.

Block elements in a table cell are displayed one below the other.

For example, if the row height is fixed by another cell or by specifying minheight at the beginning of the row, you can use VSpace to insert a vertical blank space. This will move the part above the empty space as far up as possible and the part below it as far down as possible. Specifying valign in this cell has no effect.

<Table>
 <Tr>
 ...
 </Tr>
 <Tablerule rulewidth="3pt" color="green" />
</Table>

It is possible to specify the start column.

Text formats in tables

Unlike the text formats in texts (see the section on text formats), the default text format (and thus the text alignment) depends on the alignment of the table cell.

	Alignment for <Td>	Text	Format Description
	left	__leftaligned	Left-aligned, flutter set right
	right	__rightaligned	Right-aligned, flutter set left
	center	__centered	Centered, flutter set on both sides
	justify	__justified	Justified justified justified right and left

This means that the two examples are identical:

<Td align="left">
 <Paragraph>
 <Value>....</Value>
 </Paragraph>
</Td>

<Td align="left">
 <Paragraph textformat="__leftaligned">
 <Value>....</Value>
 </Paragraph>
</Td>

For example, by changing the text format __leftaligned, all table cells can be formatted with left alignment.

Colspan and Rowspan

The natural property of a table is that all cells in a row are the same height and all cells in a column are the same width. However, cells can extend over several columns and rows. The number of overlapping columns is specified with colspan, the default here is 1. The number of rows is specified with rowspan, the default here is 1 as well. Here, you must ensure that the sum of the columns in a row equals the total number. In the following example, the second row contains only two cells, but it extends over two columns. The third row even has only one cell definition, the rest of the row is occupied by the two cell wide image from the row above (rowspan="2").

<PlaceObject>
 <Table width="10"
 columndistance="3mm"
 leading="2mm">
 <Tr>
 <Td padding-bottom="2mm">
 <Paragraph><Value>1/1</Value></Paragraph>
 </Td>
 <Td padding-left="1mm">
 <Paragraph><Value>1/2</Value></Paragraph>
 </Td>
 <Td align="center">
 <Paragraph><Value>1/3</Value></Paragraph>
 </Td>
 </Tr>
 <Tr background-color="yellow">
 <Td>
 <Paragraph><Value>2/1</Value></Paragraph>
 </Td>
 <Td rowspan="2" colspan="2" >
 <Image width="5" file="ocean.pdf"/>
 </Td>
 </Tr>
 <Tr align="center">
 <Td>
 <Paragraph><Value>3/1</Value></Paragraph>
 </Td>
 </Tr>
 </Table>
</PlaceObject>

A somewhat more complex example. The background color of the image is determined by the second line.

Effect of rowspan and colspan

Specifying the column widths

In the previous examples the widths of the cells are automatically determined by the content. You can also specify fixed column widths. The command for this is called Columns and is listed directly as the first command within Table:

<Table stretch="max">
 <Columns>
 <Column width="2mm"/>
 <Column width="1*"/>
 <Column width="3*"/>
 </Columns>
 <Tr>
 ...
 </Tr>
</Table>

Here it is specified that the table has three columns. The first column has a width of 2mm, the second and third columns divide the remaining width in a ratio of 1 to 3.

Instead of a fixed width or a * specification, you can also specify the keywords min and max:

<Trace objects="yes" />
<Table>
 <Columns>
 <Column width="min" />
 <Column width="max" />
 </Columns>
 <Tr valign="top">
 <Td>
 <Paragraph>
 <Value>The quick brown fox</Value>
 </Paragraph>
 </Td>
 <Td>
 <Paragraph>
 <Value>The quick brown fox</Value>
 </Paragraph>
 </Td>
 </Tr>
</Table>

Effect of min and max for column specifications

min in the width specification means that the column will be as narrow as possible, max means that the column will be as wide as necessary.

In addition to specifying min or max for column widths, you can also use minwidth to specify the minimum width of a column.

In the Column command, you can also define further specifications for the column: the horizontal and vertical alignment and the background color can be specified. A specification for a cell overwrites the default.

Table wraps

If the table is too high for the page, it wraps and continues on the next page. The space still available on the current page and on the subsequent pages is taken into account. The break can be inserted after each line, as long as break-below is not set to yes in the line. Individual table cells are not separated.

You can insert your own headers and footers for the table break, which are repeated on each page. These are discussed in detail in the next three sections.

Headers and footers (static)

There are two ways to define table headers in tables. The first variant is presented in this section. It is particularly suitable if the table header is known at the beginning (static). The second variant is suitable if certain table cells are to serve as header lines (sections in tables). You can also combine both variants.

The starting point is a simple table:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <PlaceObject>
 <Table>
 <Loop select="200">
 <Tr>
 <Td>
 <Paragraph>
 <Value>Tablecontents</Value>
 </Paragraph>
 </Td>
 </Tr>
 </Loop>
 </Table>
 </PlaceObject>
 </Record>
</Layout>

The header line is defined in the table as follows (as child element of the element <Table>):

<Tablehead>
 <Tr background-color="gray">
 <Td>
 <Paragraph>
 <Value>Head</Value>
 </Paragraph>
 </Td>
 </Tr>
</Tablehead>

You can define the header for the first page separately by specifying the page attribute (default is all):

<Tablehead page="all">
 ①
</Tablehead>

<Tablehead page="first">
 ②
</Tablehead>

Schema for different table headers on the first or all other pages. The order of the declaration is not important.

	
Table header for all pages

	
If page="first" is defined as here, the above definition (1) applies to all pages, but not to the first page, because here (2) applies.

With this variant you can not only define the (repeating) table header, but also the table footer. This works in the same way as <Tablehead>, except that page selection is allowed instead of first last.

<Tablefoot page="last">
 <Tr background-color="gray">
 <Td>
 <Paragraph>
 <Value>Table foot last page</Value>
 </Paragraph>
 </Td>
 </Tr>
</Tablefoot>
<Tablefoot page="all">
 <Tr background-color="gray">
 <Td>
 <Paragraph>
 <Value>Table foot for all pages</Value>
 </Paragraph>
 </Td>
 </Tr>
</Tablefoot>

Table headers and footers do not have to consist of only one line. They can also contain lines and multiple lines. If some parts are left empty, this the output will be discarded.

<Tablefoot page="last" />
<Tablefoot page="all">
 <Tr background-color="gray">
 <Td>
 <Paragraph>
 <Value>Table foot for all pages</Value>
 </Paragraph>
 </Td>
 </Tr>
</Tablefoot>

The table foot will not be shown on the last page, because the upper element (page="last") is empty.

Headers and footers (dynamic)

In the previous section, the table header is created using <Tablehead> (and its counterpart <Tablefoot>). In contrast, this section shows how to create a dynamic table header. Both variants can be combined.

<Tr sethead="yes" background-color="lightgray">
 <Td>
 <Paragraph>
 <Value>New head</Value>
 </Paragraph>
 </Td>
</Tr>

The “magic” is in sethead="yes" in the table row. This automatically repeats this line at the top of the next page, just below any static table header. This is very suitable for subheadings or sections in tables.

A somewhat constructed example. There are two sections in the table with two and eight lines. The file data.xml:

<data>
 <section name="section 1" rows="2"/>
 <section name="section 2" rows="8"/>
</data>

The layout outputs a table, for each section the heading is displayed as a line in which the attribute sethead is set to yes. The desired lines are output in a loop.

<Layout xmlns="urn:speedata.de:2009/publisher/en">
 <Pageformat width="100mm" height="60mm"/>

 <Record element="data">
 <PlaceObject>
 <Table padding="1mm" stretch="max">
 <ForAll select="section">
 <Tr sethead="yes" background-color="lightgray">
 <Td>
 <Paragraph>
 <Value select="@name"/>
 </Paragraph>
 </Td>
 </Tr>
 <Loop select="@rows" variable="i">
 <Tr>
 <Td>
 <Paragraph>
 <Value select="concat('Row ', $i)"/>
 </Paragraph>
 </Td>
 </Tr>
 </Loop>
 </ForAll>
 </Table>
 </PlaceObject>
 </Record>
</Layout>

The sections are marked with sethead="yes" and are repeated in the table header.

Headers and footers with running sum

Sometimes you may want to display a subtotal or carryover in headers or footers of tables.
The problem here is that this is dynamic information, which is determined by the space available. If the page is shorter, the sum is different. This means that you cannot define the number in advance as a header or footer.

Instead, there is the possibility to store data in a table row:

<Tr data="..." >

This data can later be retrieved in headers and footers with the special variable _last_tr_data. The variable is overwritten each time data="…​" is used. To illustrate this, there is a complete set of layout rules that uses this mechanism:

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">
 <Pageformat width="80mm" height="80mm" />

 <Record element="data">
 <!-- Initialize value for the first header line -->
 <SetVariable variable="_last_tr_data" select="0"/>
 <SetVariable variable="sum" select="0"/>

 <PlaceObject>
 <Table stretch="max">
 <Tablehead>
 <Tr background-color="#eee">
 <Td>
 <Paragraph>
 <Value>Value of $_last_tr_data: </Value>
 <Value select="$_last_tr_data"/>
 </Paragraph>
 </Td>
 </Tr>
 </Tablehead>
 <Loop select="100" variable="i">
 <SetVariable variable="sum" select="$sum + $i"/>
 <Tr data="$sum">
 <Td>
 <Paragraph>
 <Value select="concat('i = ',$i)"/>
 </Paragraph>
 </Td>
 </Tr>
 </Loop>
 </Table>
 </PlaceObject>
 </Record>
</Layout>

The calculated subtotals

Here first the header line is defined, then 100 lines are generated (<Loop select="100">), the loop number is stored and then the calculated value is stored in each line with data="$sum", which is later output in the header line.

The width of the dynamic header and footer is calculated without _last_tr_data. This can lead to problems if the newly calculated header or footer has a different format.

Assembling tables

Sometimes tables are not created in one piece. A common pattern when creating tables is to test whether a table still fits in a certain place. This is done by appending a table line by line and placing it in a group (a virtual space), which is then measured. The procedure for this is as follows:

<SetVariable variable="newtablerows">
 <Copy-of select="$tablerows"/>
 <Copy-of select="$thisrow"/>
</SetVariable>

Where $this line is a table line with start and end tag <Tr> .. </Tr> and $table lines are empty or contain several lines of the same form.

The check now takes place by creating the table in a group and then checking the height of the group, for example:

<Group name="tbl">
 <Contents>
 <PlaceObject>
 <Table width="...">
 <Copy-of select="$tablerowsnew"/>
 </Table>
 </PlaceObject>
 </Contents>
</Group>

<Switch>
 <Case test="sd:group-height('tbl') > ...">
 <!-- too large, print table without the last row -->
 <PlaceObject>
 <Table width="...">
 <Copy-of select="$tablerows"/>
 </Table>
 </PlaceObject>
 <!-- last line is now as carry forward for the next table -->
 <SetVariable variable="tablerows">
 <Copy-of select="$thisrow"/>
 </SetVariable>
 </Case>
 <Otherwise>
 <!-- fits, output table, set variable -->
 <PlaceObject groupname="tbl"/>
 <SetVariable variable="tablerows">
 <Copy-of select="$tablerowsnew"/>
 </SetVariable>
 </Otherwise>
</Switch>

With this pattern you can enlarge and measure a table line by line

A more detailed description can be found in the section Layout optimization using groups.

Alternating line colors

Changing row colors are often used in tables with many columns to help the eye read the table. The row color can be specified by background-color="…​" at <Tr>.

<Table>
 <Loop select="5" variable="i">
 <Tr background-color="{sd:alternating('tab', 'white', 'gray')}">
 <Td>
 <Paragraph>
 <Value>Zeile </Value>
 <Value select="$i"/>
 </Paragraph>
 </Td>
 </Tr>
 </Loop>
</Table>

Changing line colors. The first argument of the function sd:alternating() is an identifier to distinguish different alternations in a document.

Alternating background colors

The trick here is to use the layout function sd:alternating(), which switches between arguments. Since the attribute background-color expects a fixed value, the curly brackets must be used to jump to “XPath mode”.

After the table has been output, there is no guarantee that the next call to sd:alternating() with the identification tab will start with the first value again. This depends on which value was used last. To ensure that the table starts with the first value again, you can use the attribute eval="…​" for <Table>:

<Table eval="sd:reset-alternating('tab')">
 ...
</Table>

This resets the counter for the specified identifier (tab).

Background in table rows

Text in the background

With the attributes background-…​ you can put text in the background.

<Table width="7">
 <Tr>
 <Td background-text="Neu"
 background-size="contain"
 background-textcolor="gray"
 background-transform="rotate(-40deg)">
 <Paragraph>
 <Value select="sd:loremipsum()"/>
 </Paragraph>
 </Td>
 </Tr>
</Table>

Text in the background of a cell

Image behind the text

With the command <Overlay> you can overlay elements. In table cells, this can be used to overlay text (like references to the author of an image) over an image. But you can also put whole texts on top of each other. Whether it makes sense or not, may be put there.

<DefineFontfamily name="mini" fontsize="6" leading="8">
 <Regular fontface="TeXGyreHeros-Regular"/>
</DefineFontfamily>

<Record element="data">
 <PlaceObject>
 <Table width="7">
 <Tr>
 <Td>
 <Overlay>
 <Image width="4.5cm" file="_samplea.pdf"/>
 <Position x="100" y="10">
 <!-- Rotate 90 degrees -->
 <Transformation matrix="0 1 -1 0 0 0"
 origin-x="0" origin-y="100">
 <Textblock width="4" fontfamily="mini">
 <Paragraph textformat="left">
 <Value>Photo: Reinhard M.</Value>
 </Paragraph>
 </Textblock>
 </Transformation>
 </Position>
 </Overlay>
 </Td>
 </Tr>
 </Table>
 </PlaceObject>
</Record>

Table cell with text and an image in the background

Clearing columns

Usually, a table uses first the first positioning frame of an area, then the next, and so on.

If you now switch to <Table balance="yes">, the table is output as follows:

For this to work, the table must be output in a placement area, not on a page. The number of columns to be balanced is determined by the number of placement frames the area contains. Here is a concrete example:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">
 <Trace grid="yes"/>
 <SetGrid nx="2" dx="5mm" height="12pt"/>
 <Pageformat width="140mm" height="100mm"/>
 <Pagetype name="page" test="true()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 <PositioningArea name="twocolumns">
 <PositioningFrame width="1" height="{sd:number-of-rows()}" row="1" column="1"/>
 <PositioningFrame width="1" height="{sd:number-of-rows()}" row="1" column="2"/>
 </PositioningArea>
 </Pagetype>

 <Record element="data">
 <PlaceObject area="twocolumns">
 <Table balance="no">
 <Loop select="20" variable="i">
 <Tr>
 <Td><Paragraph><Value>Row </Value><Value select="$i"/></Paragraph></Td>
 </Tr>
 </Loop>
 </Table>
 </PlaceObject>
 </Record>
</Layout>

With balance="no" as in the example there is a full first column:

If, on the other hand, you set balance="yes", the result is

The specification is always observed on the last page of a table, since the previous pages fill the space completely anyway.

Page change in tables

If a table is larger than the available space on the page, the table is continued on the next page or in the next placement frame.
The command <TableNewPage> is used to force such a page change.

Publisher Webservice API

The speedata Webservice REST API is now available (but still beta).

The speedata Publisher can be used without local installation.
For this purpose, a so-called Software-as-a-Service solution is available at https://api.speedata.de, which can be used via a REST interface.

In order to access the speedata Publisher API, a valid Pro plan must be available and an API key (token) must be generated in the download area. This key can then be used to access all functions.

Authentication

All methods whose path starts with /v0 must be authenticated with a user name:

curl -u "sdapi_...:" "https://api.speedata.de/v0/.."

The colon at -u separates the username from the password and is not part of the username.

The username must of course be replaced by your own token, which must be generated at https://download.speedata.de/#account.

Overview of the REST methods

	Method	URL	Short description
	GET	/available	Return 200 OK to check if the server is running.
	GET	/v0/versions	List available versions.
	POST	/v0/publish	Start a publishing process.
	GET	/v0/status/<id>	Get the status of a publishing run.
	GET	/v0/wait/<id>	Wait for the PDF to get written.
	GET	/v0/pdf/<id>	Download the PDF.

/available

Without version number.
Returns HTTP status 200.

/v0/versions

List all available versions. Return is a JSON array in the form ["1.3.12", "1.4.1"] The version can be used as query parameter in /v0/publish.

/v0/publish

POST a JSON file to https://api.speedata.de/v0/publish to start the publishing process

{
 "files": [
 {
 "filename": "layout.xml",
 "contents": "PExheW91dAog..."
 },
 {
 "filename": "data.xml",
 "contents": "PGRhdGE+CiAg..."
 }
]
}

The file contents is encoded base64.

The answer is in case of success a session id, such as 340416874 encoded as json: {"id":"340416874"} with a status code 201.

A version number (or the string latest) can be passed as query parameter version, which specifies the desired speedata Publisher version. The default is always the latest developer version. Example: /v0/publish?version=1.2.43

/v0/status/<id>

	Field	Meaning
	finished	A time stamp in the format “2019-12-05T13:27:29.450219694+01:00” if the run has stopped, otherwise the string ‘null’.
	errors	The number of errors occured during the publishing run.
	errormessages	An array of error messages, if any. An error message is a dictionary with the keys “code” and “error”. Se the example.

{
 "finished": "2019-12-05T13:38:42.855821194+01:00",
 "errors": 1,
 "errormessages": [
 {
 "code": 1,
 "error": "[page 1] Image \"doesnotexist.pdf\" not found!"
 }
]
}

/v0/wait/<id>

The result is the same as in /v0/status. You don’t need to call wait to make sure the PDF file is finished, you can do a call to /v0/pdf/ which waits for the PDF to complete.

/v0/pdf/<id>

To download the PDF, call https://api.speedata.de/v0/pdf/<id> and replace the <id> with the the id from /v0/publish.

Status codes

The speedata API uses the following status codes:

	Status Code	Meaning
	200	Everything went well
	201	The requested publishing run has been created
	401	Unauthorized – Your API key is wrong
	404	API URL does not exist
	422	Something went wrong

In most error cases, a JSON file confirming to RFC 7807 is sent to the client with the following fields:

	Field	Meaning
	type	A unique URI of an error
	title	A short description
	detail	A more detailed description of the problem
	instance	The request path
	requestid	A unique id for debugging purposes

Example:

{
 "detail":"You have provided an incorrect authentication token",
 "instance":"/v0/publish",
 "title":"Not authorized",
 "type":"urn:de:speedata:api:v0:unauthorized",
 "requestid": "1234",
}

Library for the programming language Go

The API is deliberately kept small, so that applications can be quickly created
that use the API. For the programming language Go there is a
library that makes it easier to use the API.

The documentation can be found at Go dev, the repository is on GitHub at https://github.com/speedata/publisher-api.

Advanced topics

In this section some of the features already mentioned will be discussed in more detail.

Bookmarks

PDF Bookmarks can be used as an alternative table of contents for the PDF viewer (e.g. Adobe Reader). Almost all of these programs can display bookmarks. You can use them to jump directly to certain places in the document. A special feature of bookmarks is that they are arranged hierarchically (level). For each bookmark you can use the attribute open to determine whether it should be displayed “open” or “closed”.

Bookmarks are displayed in texts or on the level of <Record>.

<PlaceObject>
 <Bookmark select="'Content'" level="1"/>
 <Textblock>
 <Bookmark select="'Introduction'" level="1" open="yes"/>
 <Paragraph>
 <Value>...</Value>
 </Paragraph>
 </Textblock>
</PlaceObject>
<PlaceObject>
 <Textblock>
 <Bookmark select="'One'" level="2" open="yes"/>
 <Paragraph>
 <Value>...</Value>
 </Paragraph>
 </Textblock>
</PlaceObject>

Bookmarks are used for quick navigation in a PDF document. On the left is an excerpt from the PDF viewer Skim and on the right Adobe Acrobat Reader.

Important: The levels must be consecutive. A level 1 bookmark may only be followed by another level 1 bookmark (for the next section) or one on level 2 (subsection).

Creation of XML structures

The speedata Publisher can create, save and read in XML files.
This allows you to create tables of contents, cross-references and other applications.

The XML structure is not created directly, but indirectly via the two commands <Element> and <Attributes>.
So the following XML file

<Root>
 <Greeting content="Hello, world!" />
</Root>

are generated from this structure in the layout rules:

<Element name="Root">
 <Element name="Greeting">
 <Attributes name="content" select="'Hello, world!'"/>
 </element>
</element>

can be generated.
Text content outside of attributes, such as mixed content, cannot be output with the Publisher.

Print output / crop marks

A printable PDF usually differs little or not at all from a PDF that is only read on screen. A few points that should be considered for output to a printer:

	Format
	While today’s screens tend to be in landscape format (16:10 or similar aspect ratios), the usual print page is in portrait format.
In the command <Pageformat> you should specify the desired size (final format).
Bleed marks and bleeding can be controlled separately (see below or the command <Options>)

	Colors
	Since printing inks are almost always applied to white paper, they must be indicated differently than on the screen, which makes LEDs light up on a dark background.
Care should be taken to define all colors either in CMYK color space or in greyscale mode.
It is possible to convert RGB values into CMYK by calculation, but in practice this only works moderately well.

	Images
	Again, one should take care to only include images in the CMYK color space.
The Publisher takes over the images without any changes or conversion into the PDF.
This means that the source material should already be suitable for printing.

	Quality (pixel number) of the images
	Sometimes it is said that only images with at least 300 DPI (dots per inch) should be included.
The specification of the DPI number is often nonsensical, as it can be arbitrarily defined in the image.
It depends on the actual number of pixels per inch according to the scaling in the Publisher.
The Publisher can issue a warning if this is below a certain value (attribute “dpiwarn” see <Image>).

	Fonts
	The Publisher automatically embeds all used fonts in the PDF (subsetting - only the actually used letters and characters are embedded).

Crop marks

If no special setting is made, the speedata Publisher creates a PDF which has exactly the size of the specified pages.
To switch on bleed or crop marks, these must be activated in the element <Options>:

<Options
 cutmarks="yes"
 bleed="3mm"
 />

These instructions create trim marks that are 1cm long and 3mm from the inner edge of the page (TrimBox).
The distance results from the specification at the attribute 'bleed'.

The created PDF file always contains the following boxes:
outside is the MediaBox, the bleed is marked by the BleedBox and the actual page is marked by the TrimBox.
If no bleed is specified, the BleedBox and the TrimBox fall on top of each other.
If no trim marks are created, the MediaBox coincides with the TrimBox, so that all three boxes have the same dimensions without specifying trim marks and bleed.

In the example the crop marks go up to the blue line that marks the bleed.
The green line shows the final format of the page (screenshot from Adobe Acrobat).

Crop marks and bleed in Adobe Acrobat

The command <PDFOptions> offers the possibility to set preferences for the print dialog in the PDF viewer.
These are only supported by some programs (mainly Adobe Acrobat Reader) and are platform dependent.

Using CSS with the speedata Publisher

CSS (Cascading Stylesheets) is a language mainly used on the web to determine the appearance of objects.
The idea is to separate formatting from content.
On the web - so the pure teaching - the content is described in HTML, while the appearance is determined by CSS.
With the speedata Publisher the separation is even clearer.
The data usually contains no information about the appearance, while the layout rules have no information about the data.

The speedata Publisher relies exclusively on the built-in language when formatting the objects.
Some elements can be designed using CSS.
In the Publisher this is only rudimentary:
Currently the commands <Box>, <Circle>, <Frame>, <Paragraph>, <Rule>, <Td>, <Tablerule> and <U> can be formatted via CSS.
The Command Reference lists the commands with the associated attributes that can be accessed via CSS functionality.

The CSS implementation in the speedata Publisher has more the character of a "proof of concept" or prototype. The commands and properties that can be controlled via CSS are very limited.

A CSS stylesheet can be available and integrated as an external file.
Alternatively, one can write CSS instructions directly into the layout rules.
<Stylesheet> is the command for both variants:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Stylesheet filename="style.css"/>

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>Test</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>

</Layout>

with the following CSS file:

p {
 color: red;
}

results in the word "Test" in the PDF in the color red.

If the CSS statements are inserted directly, the syntax is as follows:

 <Stylesheet>
 p {
 color: red;
 }
 </Stylesheet>

As known from HTML, the CSS instructions are assigned to certain elements with so-called selectors.

<Table>
 <Tr minheight="4">
 <Td class="myclass" id="myid">
 <Paragraph>
 <Value>Hallo Welt</Value>
 </Paragraph>
 </Td>
 </Tr>
</Table>

The table cell in the example above could be accessed via the following selectors:

#myid {
 vertical-align: top ;
}

.myclass {
 vertical-align: top ;
}

and

td {
 vertical-align: top ;
}

The first case is via the 'id' attribute, which must be unique in the layout rules.
The second case is addressed via the class class="…​".
The class can be the same for several elements in the layout set of rules.
The third case refers to all elements 'Td' in the layout set of rules.
Here the usual specificity rules for CSS apply, but `!important' is not supported.

CSS and and elements in data

Text markup in the data works as follows:

<p>Text, Text, Text bold, Text Text</p>

The Publisher will ensure that the text within the 'b' element appears in bold.

You can also add CSS styles to your own elements.
For example, if you have the following data

<data>hello <green>green</green> world</data>

you can use CSS to color the element:

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Stylesheet>
 green {
 color: green;
 }
 </Stylesheet>

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="."/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

Elements in data can now be colored

Currently, only the attributes underline and color (text-decoration: underline; and color: …​) can be set via CSS.

Groups (virtual objects)

One of the most important features of the Publisher is the ability to place objects on a virtual area (Group) in order to subsequently measure them or place them together.
This virtual area initially has no width and no height.
The area adapts to the dimensions of the content.
This allows you to answer questions such as "Does the article (with picture and description) still fit on the page?" or "How much do you need to
reduce font size so that all the text fits on an A4 page?".

It is also possible to provide this virtual area with its own page grid.
This allows, for example, to position objects more finely than is possible with a coarser side grid of the main page.

There are a few things to consider when using the groups:

	
The width specifications for text blocks and tables are now mandatory, since there is no "natural maximum".

	
The group grid cannot be defined with 'nx' and 'ny' (division), but only with fixed values for height and width.

	
Areas cannot be combined with groups. This means that 'area' must not be specified for 'PlaceObject>' and similar commands.

	
Placements in groups must not be absolute (e.g. row="2mm").

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Trace grid="yes" objects="yes"/>

 <Record element="data">
 <Group name="test">
 <Contents>
 <PlaceObject row="2" column="2">
 <Image width="3" file="_sampleb.pdf"/>
 </PlaceObject>
 </Contents>
 </Group>

 <Message select="sd:group-height('test')"/>

 <PlaceObject groupname="test"/>
 </Record>
</Layout>

The group takes up the minimum space.

If the group has been created but not yet placed, you can use various layout functions to measure the dimensions of the group: sd:group-width('group name') and sd:group-height('group name') output the width and height in whole grid cells.
The <Message> command in the example above prints the number 6, even though the group has only the height of about 5.2 cells.
The Publisher always calculates with whole grid cells.

This says it all about groups.
The applications are very diverse.
In principle, the question is always: how large are these objects?
Do they still fit on the page? Do I have to insert a page break here? And so on.
It’s best to play a little with the virtual areas to get familiar with them.
Used correctly, they are a powerful tool.

See the chapter Layout optimization using groups for an example how to optimize layout using groups.

Virtual pages

With the Virtual Pages you can create and discard pages, similar to the Virtual Areas (Groups).
For this purpose there are the commands <SavePages> and <InsertPages> and the layout function sd:count-saved-pages().
The first command has the effect that the output within the command is not written to the PDF.
With the second command you can output these saved pages.
The layout function determines the number of saved pages.

Text and an image should be displayed on exactly one page, with the image displayed as large as possible and preferably in the text flow.
Now the text is to be set with different parameters until the text and image fit exactly on one page, i.e. the page number from sd:count-saved-pages() gives the value 1.

The data file data.xml is structured as follows:

<?xml version="1.0" encoding="UTF-8"?>
<journal>
 <article ueberschrift="Gummibärchen">
 <text>
 <paragraph>Freilebende Gummibärchen gibt es nicht.
 Man kauft sie in Packungen an der
 Kinokasse. Dieser Kauf ist der Beginn
 einer fast erotischen und sehr ambivalenten
 Beziehung Gummibärchen-Mensch. Zuerst genießt man.
 Dieser Genuß umfaßt alle Sinne.
 Man wühlt in den Gummibärchen, man fühlt sie.
 </paragraph>
 </text>
 </article>
</journal>

The layout file is somewhat more extensive and is explained in several stages:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Options ignoreeol="yes" mainlanguage="German"/> ①

 <DefineFontfamily name="title" fontsize="16" leading="16"> ②
 <Regular fontface="sans-bold"/>
 </DefineFontfamily>

 <SetGrid width="5mm" height="12pt"/> ③

 <Pagetype name="text" test="true()">
 <Margin left="1.5cm" right="0.5cm" top="1cm" bottom="2cm"/>

 <PositioningArea name="heading"> ④
 <PositioningFrame width="27" height="8" row="1" column="1"/>
 </PositioningArea>

 <PositioningArea name="text"> ⑤
 <PositioningFrame width="13" height="51" row="9" column="1"/>
 <PositioningFrame width="13" height="51" row="9" column="15"/>
 </PositioningArea>
 </Pagetype>

	
The head is back to normal. The ignoreeol option says that the line breaks in the data should be ignored.

	
Then the font size for the header is set. The body text will use the default font size of 10/12 point.

	
If you set the grid height equal to the normal line spacing, you can easily achieve register-true typesetting. The page type defines two page areas (see section Areas on the page (PositioningArea))

	
The header area covers the first 8 lines and is independent of the text area.

	
The area for the text consists of two columns.

The actual data processing follows.
In the beginning the specifications for the image position and image size are defined.
The variable 'i' then selects the default 1, 2 or 3.

 <Record element="Journal">

 <!-- Variant 1: The picture goes over the whole width -->
 <SetVariable variable="imagewidth1" select="38"/>
 <SetVariable variable="imagecolumn1" select="1"/>

 <!-- Variant 2: The picture starts in the second column -->
 <SetVariable variable="imagewidth2" select="24"/>
 <SetVariable variable="imagecolumn2" select="15"/>

 <!-- Variant 3: The picture appears on the right side -->
 <SetVariable variable="imagewidth3" select="10"/>
 <SetVariable variable="imagecolumn3" select="29"/>

Now follows the decision about virtual pages.

 <SetVariable variable="i" select="0"/>
 <Until test="$i = 3"> ①
 <SetVariable variable="i" select="$i + 1"/>

 <SavePages name="pagewithimage"> ②
 ③
 <PlaceObject column="{sd:variable('imagecolumn',$i)}" row="9">
 <Image width="{sd:variable('imagewidth',$i)}" file="_sampleb.pdf"/>
 </PlaceObject>
 <NextRow/>

 <PlaceObject column="{sd:variable('imagecolumn',$i)}"> ④
 <Table stretch="max" padding="3pt">
 <Tr>
 <Td padding-left="10pt" align="left">
 <Paragraph>
 <I><Value>Figure caption</Value></I>
 </Paragraph>
 </Td>
 </Tr>
 <Tablerule rulewidth="20pt" color="white"/>
 </Table>
 </PlaceObject>

 <ProcessNode select="article"/> ⑤
 </SavePages>

 <Switch> ⑥
 <Case test="sd:count-saved-pages('pagewithimage') = 1 ">
 <SetVariable variable="i" select="3"/>
 </Case>
 </Switch>

 </Until>
 <InsertPages name="pagewithimage"/> ⑦
 </Record>

	
The loop is run through for the values i = 1, i = 2 and i = 3

	
From here on, the contents are stored temporarily.

	
Here the image with the specifications is output.

	
Here the caption.

	
Now the text is output.

	
If the desired page number (1) is reached, i is set to 3 to abort the loop prematurely.

	
Now the saved pages are output.

What is still missing is the output of the text.
This is triggered in <ProcessNode select="Article"/> above.
Since this is an example, we create a paragraph in a loop.

 <Record element="article">
 <Output area="title">
 <Text>
 <Paragraph textformat="title" fontfamily="title">
 <Color name="green">
 <Value select="@title"/>
 </Color>
 </Paragraph>
 </Text>
 </Output>

 <Loop select="7" variable="c">
 <Output area="text" allocate="auto">
 <Text>
 <Paragraph fontfamily="text">
 <Value select="text/paragraph"/>
 </Paragraph>
 </Text>
 </Output>
 </Loop>
 </Record>
</Layout>

Side construction with 7 or 12 paragraphs. In the first case the default "2" is used, in the second case the default "3" is used.

Markdown

The markdown support is considered experimental, there will be changes to the code.

You can render text with markdown, a common markup “language” for text. See https://www.markdownguide.org for example if you want to learn about markdown.

To use markdown in your document, just call the sd:markdown function:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="sd:markdown(.)" />
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

with the data file:

<data>
A title

* one
* anotherone
* three
</data>

renders a h1 title and a bullet list:

The vertical spacing is not optimal yet, this will be fixed in a future version of the speedata Publisher.

Markdown extensions

There are several markdown extensions that are used to create tables, footnotes and other gimmicks. Some of them are supported by the speedata Publisher. The implementation will be improved in due time. Some of the extensions automatically activate others. Just try them out.

	Feature	Description	
	gfm	GitHub flavored markdown	
	table	Use tables	
	strikethrough	Some helpers for ~ strikethrough	
	linkify	Create automatic links	
	definitionlist	definition lists	
	footnote	Footnotes 	
	typographer	This extension substitutes punctuations with typographic entities like smartypants	
	highlight	Source code highlighting	

These options can be set like

<Options markdown-extensions="highlight,table" />

You can also select the highlight style with the prefix hlstyle_, for example

<Options markdown-extensions="highlight,hlstyle_tango" />

The list of available styles are at https://github.com/alecthomas/chroma/tree/master/styles.

You can also set rendering options with the prefix hloption_. Currently only hloption_withclasses is supported, which has the effect that classes are used instead of …​ for syntax highlighting.

A speedata Publisher quine using markdown

This section should be taken with a grain of salt…​ With markdown it is now easily possible to create a layout.xml quine.

Run the following layout with sp --dummy and you will get a PDF which reproduces itself:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">
 <Options markdown-extensions="highlight,hlstyle_tango" />

 <Record element="data">
 <SetVariable
 variable="raw"
 select="unparsed-text('layout.xml')" />
 <SetVariable
 variable="fenced"
 select="concat('```xml
', $raw ,'
```'))"/>
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="sd:markdown($fenced)" />
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

The explanation is simple. With unparsed-text() the layout.xml is loaded without interpretation, then enclosed with ``` (three backticks) and line breaks and output as markdown.
The three backticks mean that the content is not interpreted but only placed in the PDF (with all spaces as in the input itself).

Rotation of contents

Objects that are output with <PlaceObject> can be rotated.
For this purpose, there is the attribute rotate, which expects an angle (in degrees), whereas positive values cause a clockwise rotation.

<PlaceObject rotate="10">
 <Image file="_sampleb.pdf" width="3"/>
</PlaceObject>

When an object is rotated, you need to specify the point around which it should rotate.
The default setting is the upper left corner.
With the attributes origin-x (left, center and right) and origin-y (top, center, bottom) you can define the axis of rotation.
In addition to these values, numbers from 0 to 100 are also possible, the upper left corner is 0, 0 and the lower right corner is 100, 100.

The image is rotated by 10 degrees. A negative value would make the rotation counterclockwise.

In examples repository on github there is a document in the technical directory which shows the effect of origin-x and origin-y.

The attribute rotate is available for both <PlaceObject> and <Image>. The attribute at <Image> can only rotate images in 90° steps. Therefore, in practice the rotation is rather controlled by <PlaceObject>.

Depending on what you are aiming at, rotation should be applied directly to the image <Image> or to the <PlaceObject> element.

This minimal sample shows the difference:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <PlaceObject rotate="-90">
 <Image file="_sampleb.pdf" width="3cm"/>
 </PlaceObject>
 <ClearPage/>
 <PlaceObject>
 <Image file="_sampleb.pdf" width="3cm" rotate="-90"/>
 </PlaceObject>
 </Record>
</Layout>

Bear in mind that this rotation might also affect to some given image dimensions.

Using the command <Transformation> (see section Transformation and in the appendix the command description) you can also rotate contents.
The matrix has the form "cos θ sin θ -sin θ cos θ 0 0", for a rotation of 90 degrees thus "0 1 -1 0 0 0".
This is shown in the section Image behind the text.

Sorting data

The speedata Publisher offers an easy way to sort data. If this method is not sufficient, the sorting must be performed by an external program such as XSLT.

Assuming that the data file (data.xml) looks like this:

<data>
 <item value="one"/>
 <item value="two"/>
 <item value="three"/>
</data>

Can now be sorted with <SortSequence>. The original data is not changed.

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <SetVariable variable="unsorted" select="*"/>
 <SetVariable variable="sorted">
 <SortSequence select="$unsorted" criterion="value"/>
 </SetVariable>
 <PlaceObject>
 <Textblock>
 <ForAll select="$sorted">
 <Paragraph><Value select="@value"/></Paragraph>
 </ForAll>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

In addition to the command <SortSequence> there is also the possibility to sort and group by <MakeIndex>. This command is described in the chapter Sorting of keyword indexes.

Wrap around images

Text that is output using the <Output allocate="auto"> command flows around previously placed objects. It is therefore useful to place objects that are to be flowed around on future pages first. This can be achieved with the page attribute in the command <PlaceObject>. In the attribute you must specify either a concrete page number or next for the next page. To avoid the cursor being changed during output, it is recommended to set the attribute keepposition to yes.

The complete example can be found at https://github.com/speedata/examples/tree/master/technical/wraparoundobjects.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <SetGrid height="12pt" nx="10"/>

 <Pageformat width="180mm" height="90mm"/>
 <DefineTextformat name="text" orphan="yes" widow="yes"/>

 <LoadFontfile name="RedactedScript"
 filename="redacted-script-regular.ttf"/>
 <DefineFontfamily name="text" fontsize="10" leading="12">
 <Regular fontface="RedactedScript"/>
 </DefineFontfamily>

 <Record element="data">
 <PlaceObject column="8" row="1" keepposition="yes">
 <Box width="3" height="6"
 background-color="thistle" padding-left="2mm"
 padding-bottom="2mm"/>
 </PlaceObject>

 <PlaceObject column="1" row="12" keepposition="yes">
 <Box width="3" height="6"
 background-color="lightgreen" padding-top="2mm"
 padding-right="2mm"/>
 </PlaceObject>

 <Output allocate="auto" row="1">
 <Text>
 <Loop select="3">
 <Paragraph>
 <Value select="sd:dummytext()"/>
 </Paragraph>
 </Loop>
 </Text>
 </Output>
 </Record>
</Layout>

Automatic flow around objects that were previously output.

Complex shapes

It is possible to create outlines of images with non-rectangular shapes. For this purpose, an image file is provided with an outline file formulated in XML.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <SetGrid height="12pt" width="4mm"/>

 <Pagetype name="page" test="true()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 <PositioningArea name="text">
 <PositioningFrame width="20" height="20" row="1" column="1"/>
 </PositioningArea>
 </Pagetype>

 <Record element="data">
 <PlaceObject column="16" row="1" keepposition="yes">
 <Image file="pocketwatch.pdf"/>
 </PlaceObject>

 <Output allocate="auto" row="1" area="text">
 <Text>
 <Loop select="3">
 <Paragraph>
 <Value select="sd:dummytext()"/>
 </Paragraph>
 </Loop>
 </Text>
 </Output>
 </Record>
</Layout>

The file pocketwatch.pdf file can have an outline file with the same name and the extension xml, which is structured as follows

<imageinfo>
 <cells_x>75</cells_x>
 <cells_y>100</cells_y>
 <segment x1="35" x2="40" y1="5" y2="5"/>
 <segment x1="33" x2="42" y1="6" y2="6"/>
 <segment x1="31" x2="44" y1="7" y2="7"/>
 <segment x1="30" x2="45" y1="8" y2="8"/>
 ...
 <segment x1="30" x2="46" y1="95" y2="95"/>
 <segment x1="33" x2="43" y1="96" y2="96"/>
</imageinfo>

The segments determine the occupied area. The specifications refer to the (arbitrary) unit of 75x100 units.

The shape of the watch must be determined in a preparatory step.

This functionality is still experimental. The next versions of the Publisher will probably have improvements to this feature. The outline of an image can be created with the program imageshaper at https://github.com/speedata/imageshaper.
A complete example can be found at https://github.com/speedata/examples/tree/master/imageshape.

Page types

Page types (or master pages, page templates) are used to define margins for pages, create page frames and perform actions when a page is created or written to the PDF file.
Classically, there is a page template for left pages and for right pages.
In the simplest case, a template looks like this:

<Pagetype name="page" test="sd:even(sd:current-page())">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
</Pagetype>

The condition in the attribute 'test' can be arbitrarily complex. This attribute must always be specified.
A page is selected as soon as a test of a page type yields true.
Examples:

	
true(): This page is always selected, since true() always results in true.

	
sd:current-page() > 1: Here the page template is selected for all pages following the first page.

	
sd:even(sd:current-page()): If the page number is even, this page type is used. This is usually when the page is a left page.

	
It can also be more complex: sd:even(sd:current-page()) and $part = 'main'. As long as the condition can be evaluated to true or false, this is a valid expression.

What happens if there are multiple conditions that are true at the same time?
Page types are evaluated from “bottom to top”.
This means that special page templates must be defined later than the general ones.
The default template is defined first and has as condition true().
So it is evaluated last according to this logic and is always used if no other page type in the test returns true (fallback).

<Pagetype name="left pages" test="sd:even(sd:current-page())">
 ...
</Pagetype>
<Pagetype name="right pages" test="sd:odd(sd:current-page())">
 ...
</Pagetype>
<Pagetype name="first page" test="sd:current-page() = 1">
 ...
</Pagetype>

Here, the page type for the first page after the page type for right pages must be defined, otherwise it would not be considered (sd:odd(1) returns true).

Text frame

Text frames can be created in the page type definition.
These are described in detail in the section "Areas on the page".

AtPageCreation, AtPageShipout

The two commands <AtPageCreation> and <AtPageShipout> are responsible for executing code when a page is created and when a page is written to the PDF file.
They can be used for many purposes.
The most common is to create the page header in <AtPageCreation> and the page footer in <AtPageShipout>.

The following is an example of a page footer.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Pagetype name="page" test="true()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>

 <AtPageShipout>
 <PlaceObject column="1" row="{sd:number-of-rows() - 1}">
 <Table stretch="max">
 <Tablerule/>
 <Tr>
 <Td align="left">
 <Paragraph>
 <Value select="sd:current-page()"/>
 </Paragraph>
 </Td>
 <Td align="right">
 <Paragraph>
 <Value>Name</Value>
 </Paragraph>
 </Td>
 </Tr>
 </Table>
 </PlaceObject>
 </AtPageShipout>
 </Pagetype>

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>Content</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

Page with footer

ClearPage

With the command <ClearPage> you can specify which page type should be selected for the next page, even if the condition (test) for `<Pagetype>' does not return true.

The following example defines two page types, a template “Standard”, which is always used and a template “Special”, which is explicitly selected with <ClearPage>.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Pageformat width="210mm" height="50mm"/>

 <Pagetype name="Special" test="false()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 </Pagetype>

 <Pagetype name="Standard" test="true()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 </Pagetype>

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>Page 1</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <ClearPage pagetype="Special" openon="right" />
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>Page 3</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

In the log file (publisher-protocol.xml) you can see which page types are selected:

<entry level="INFO" msg="Create page" type="Standard" pagenumber="1"></entry>
<entry level="INFO" msg="Number of rows: 3, number of columns = 19"></entry>
<entry level="INFO" msg="Create font metrics" name="texgyreheros-regular.otf" size="10.0" id="1" mode="harfbuzz"></entry>
<entry level="INFO" msg="Shipout page 1"></entry>
<entry level="INFO" msg="Create page" type="Standard" pagenumber="2"></entry>
<entry level="INFO" msg="Number of rows: 3, number of columns = 19"></entry>
<entry level="INFO" msg="Shipout page 2"></entry>
<entry level="INFO" msg="Create page" type="Special" pagenumber="3"></entry>
<entry level="INFO" msg="Number of rows: 3, number of columns = 19"></entry>
<entry level="INFO" msg="Shipout page 3"></entry>

Attach files to the PDF

The PDF file format offers the possibility of embedding files in the document so that they can then be downloaded as stand-alone documents. Electronic invoices, for example, can be sent as a “human-readable” PDF with an attached computer-readable description (as XML).

Any number of files can be attached, but only one ZUGFeRD invoice.

Attach files

<AttachFile description="A nice view"
 type="application/pdf"
 filename="ocean.pdf" />

This command is used to attach a file to the PDF. The type is the mime type of the attached file.

This is what attached files look like in Adobe Acrobat.

Attach ZUGFeRD invoices

To attach an electronic invoice, the value at type must be exactly the string ZUGFeRD invoice:

<AttachFile description="Electronic invoice"
 type="ZUGFeRD invoice"
 filename="invoice.pdf" />

The output filename is automatically set to ZUGFeRD-invoice.xml and the document conforms to the PDF/A-3 standard.

The file name is changed to ZUGFeRD-invoice.xml.

Starting the Publisher via the Hotfolder

The speedata Publisher can monitor a directory as a “watchdog” in order to start automatically when changes are made.
Such a directory is also called hotfolder.
You can specify rules about what happens when a certain file is written to this directory.

The Publisher deletes the XML file from the directory as soon as it is processed.
The hotfolder is configured in the same way as the Publisher using the publisher.cfg file.

[hotfolder]
hotfolder = /Users/speedata/tmp/hotfolder
events = layout\.xml:run(runpublisher);data\.xml:run(runpublisher)

The configuration consists of two parts: The hotfolder entry points to the (empty) directory where the files are written to. The entries under events follow the pattern:

<Regular expression>:run(<programname>)

Several entries are separated by semicolon.

In the example, if one of the files layout.xml or data.xml is written to the /Users/speedata/tmp/hotfolder directory, the runpublisher program is triggered. The runpublisher program could be a shell script that calls the Publisher:

#!/bin/sh

{
 echo "Running speedata Publisher ($1)"
 cd /Users/speedata/tmp/hotfolder
 sp
} > /tmp/publisher.log 2> /tmp/publisher.err

Usually this is of course somewhat more extensive, for simple applications this is sufficient. The program configured in run() gets the full path to the file in the hotfolder as the only argument.

It doesn’t have to be just XML files to which the Publisher’s watchdog reacts. They can be any files specified using the regular expression.

Lua-Filter / pre-processing

Sometimes you may want to convert the data into another format or check for correctness before the actual PDF creation.
For this purpose there is the possibility (since version 3.1.9) to execute a Lua script before the actual publishing run.
Lua is a simple but powerful programming language that is intended to be built into other programs as a scripting language.

Three use cases can be found in examples repository.

Calling the Lua script

The filter is started either via the command line

sp --filter myfile.lua

or via the configuration file, which must contain the following entry

filter=myfile.lua

The specified Lua script will be executed before the PDF file generation starts. It must be within the publisher search path.
Therefore the main application of this pre-processing is the transformation of data into a format suitable for the speedata Publisher. This way CSV or Excel files can be converted to XML and then the PDF generation can be started. It is also possible to validate data.

The application options are described below, and at the very end there is another overview of the built-in functions and methods.

Validate input data

There are several ways to validate RELAX NG files. Beside a variant to validate the schema directly in the XML editor (see the corresponding section in the manual) there is the possibility to use an external program for this.
One of these is Jing. It is delivered with the Publisher.

In the Lua preprocessing there is a function that does the validation:

runtime = require("runtime")
runtime.validate_relaxng(‹xmlfile›, ‹schemafile›)

The function returns false and the error message in case of an error. Example:

-- adjust the paths, of course
runtime = require("runtime")
ok, msg = runtime.validate_relaxng("layout.xml","../schema/layoutschema-en.rng")
if not ok then
 print(msg)
 os.exit(-1)
end

This is saved in a file, e.g. valididate.lua and then the publisher is called with

sp --filter validate.lua

Before each run, the system checks whether the layout file corresponds to the schema and only then does processing continue.

You can check not only the layout file for correctness, but also all other XML files.
But for this you have to create your own RELAX NG schema.
Instructions are available at https://relaxng.org/tutorial-20011203.html.
Depending on the data file this is also quite easy.
Especially if you get data from external sources again and again, you can be sure that the desired structure is kept.

Executing a transformation

An XSLT transformation processes an XML file with an XSLT script and generates an output file.
XSLT is a programming language designed for processing XML data.
Often data from PIM systems or databases is not in the form that is optimal for the publisher.
With XSLT you can process and modify such output data.

The program saxon (supplied with the speedata Publisher) can execute an XSLT script.
The call is the following:

runtime = require("runtime")
runtime.run_saxon(‹XSL›, ‹source›, ‹outfile›, ‹parameter›)

The parameters have the form keyword=value. Only one parameter can be given, for more parameters use the named parameters based saxon call (see below).

runtime = require("runtime")
ok, msg = runtime.run_saxon("transformation.xsl", "sourcefile.xml", "data.xml")

-- quit the publishing process if the transformation fails
if not ok then
 print(msg)
 os.exit(-1)
end

Alternatively, the call to Saxon can be done as follows:

runtime = require("runtime")
ok, msg = runtime.run_saxon({ key = value, key = value, ... }

Allowed key/value pairs are:

	Key	Value
	source	Source file (XML)
	stylesheet	Stylesheet file (XSL)
	out	Result
	initialtemplate	Name of the template to be called
	params	Table with the key/value pairs

Example:

runtime = require("runtime")
ok, msg = runtime.run_saxon({stylesheet = 'json2xml.xsl',
 out = 'data.xml',
 initialtemplate = 'main',
 params = { ["key"] = value }})

See also the example in examples repository.

Creating XML files

You can also create the data file to be processed with the Lua script.
For this purpose there is the function encode_table() in the module xml, which creates an XML file from a Lua table.

The script

xml = require("xml")
tbl = {
 ["_type"] = "element",
 ["_name"] = "data",
 {
 ["_type"] = "element",
 ["_name"] = "child",
 "Hello, world",
 }
}

ok, msg = xml.encode_table(tbl)
if not ok then
 print(msg)
 os.exit(-1)
end

generates the XML file

<data><child>Hello, world</child></data>

which is available for the next publisher run.
This is particularly useful if the data source is not in XML.

Processing of Excel files

A common use case is that the data is to be read from Excel files for processing.
For this purpose, the module xlsx contains the function open() which opens an existing file:

xlsx = require("xlsx")
spreadsheet, err = xlsx.open("myfile.xlsx")
if not spreadsheet then
 print(err)
 os.exit(-1)
end

The object spreadsheet contains the individual worksheets.
The number of worksheets can be determined using the length operator and the individual worksheets can be determined using the index (1 is the first worksheet).

numWorksheets = #spreadsheet
ws = spreadsheet[1]

The object ws can be used to access the cell contents directly.
To do this, it is called as a function and returns a character string.
The first cell in the upper left corner has the coordinates 1,1, the first cell in the second row 1,2 and so on.

cell1 = ws(1,1)
cell2 = ws(1,2)

The name of the worksheet can be determined by the value name:

name = ws.name

Read CSV files

Similar to Excel files, CSV files can also be read in directly.
However, the structure is simpler because there is only one “worksheet”.

csv = require("csv")
csvtab, msg = csv.decode("myfile.csv",{columns = {1,2,3}})
if not csvtab then
 print(msg)
 os.exit(-1)
end

The second parameter at csv.decode() is optional.
In this example only columns 1, 2 and 3 are output.
The result is a table of rows.
Each row is in turn a table containing the individual values of the row.

The example repository shows how to create an XML file from the CSV file.

Function reference

Runtime

In this module all functions and settings are collected, which are of a more general nature.

	projectdir
	A string containing the current project directory (the directory with the layout.xml or publisher.cfg file)

	variables
	A table with all variables specified by -v on the command line or in the configuration file with vars=…​.

	finalizer
	If a function is assigned to this variable, it will be called after PDF creation (callback). The function has no parameters and no return value.

runtime = require("runtime")

function finished()
 print("PDF is finished now.")
end

runtime.finalizer = finished

	options
	Table with configuration values (see how to configure the speedata Publisher). Can be used for reading and writing the settings.

	validate_relaxng(‹xml file›, ‹schema file›)
	This function validates the specified XML file with the RELAX NG (XML syntax) schema specified in the second parameter.
The return is a boolean value that is true if the command was executed without errors. Otherwise a second return value (string) is returned, which contains the error message.

	run_saxon(‹XSL›, ‹source file›, ‹output file›, ‹parameter›)
	This function calls the saxon program supplied with the Publisher. It expects three string arguments (the stylesheet, the input file and the output file) and an optional argument that is passed as a parameter to saxon. The return is a boolean value which is true if the command was executed without errors. Otherwise a second return value (string) is returned, which contains the error message. The parameter has the form keyword=value.

	run_saxon(‹table›)
	This function calls the saxon program supplied with the Publisher. It expects the arguments as a table with the keys explained in the table below. The value of params is a table of key value pairs for parameters that are passed to saxon. The return is a boolean value which is true if the command was executed without errors. Otherwise a second return value (string) is returned, which contains the error message.

	Key	Value
	source	Source file (XML)
	stylesheet	Stylesheet file (XSL)
	out	Result
	initialtemplate	Name of the template to be called
	params	Table with the key/value pairs

	execute(‹table with arguments›)
	Runs a program and prints its output to the console. For example, to start the speedata Publisher itself, the following syntax works:

runtime.execute({"sp","--runs","2"})

If necessary, the first parameter (the program name) must be specified with absolute path of the program. Under Windows, forward slashes (/) also work as separators instead of backward slashes (\).

	find_file(‹filename or URL›)
	Find the resource and return a full path on the local disk to access the resource. Returns nil or false and perhaps an error message if it can’t find the resource.

xml

The XML module is used to create or read XML files.

	xml.encode_table(‹table›,[filename])
	Creates an XML file (data.xml or the optionally given filename) of the passed table.
Return value 1 is a bool (success), value 2 is the error message if the first value is false.
The table has the following structure:

element = {
 ["_type"] = "element",
 ["_name"] = "element name"
 attribute1 = "value1",
 attribute2 = "value2",
 child1,
 child2,
 child3,
 ...
}

child1, …​ are either strings, elements or comments. Comments have the following form:

comment = {
 _type = "comment",
 _value = " This is a comment! "
 }

	decode_xml(filename›)
	Reads an XML file and creates a table in the format from encode_table. Return value 1 is a bool (success), value 2 is the error message if the first value is false or the table if the first value is true.

CSV

CSV files

	decode(‹filename›, ‹parameter›)
	Reads a CSV file. The return value is a table or, in case of an error, false and an error message.

The parameters are encoded in a table:

	charset
	If the CSV file is Latin-1 encoded, this value must be ISO-8859-1. Other encodings on request. The default (without the charset parameter) is UTF-8.

	separator
	Either a comma (default), a semicolon or the appropriate separator.

	columns
	A table containing the desired columns in their order.
For example, {3,2,1} for the first three columns in reverse order.

xlsx

Reads an Excel file.

	open(‹filename›)
	Opens the specified file. The return value is a spreadsheet object or, in case of an error, false and an error message.

The spreadsheet object contains the individual worksheets. The number of worksheets can be determined with the # operator. The individual worksheets can be accessed with the index operator [], where the first worksheet has index 1.

The individual worksheets can be used as functions with two parameters (see example above).
The parameters are the x and y coordinates of the cell to be read, the first cell in the upper left corner has the coordinate 1,1.
The dimensions of the content can be determined using the parameters minrow, maxrow, mincol and and maxxcol.
The name is contained in the parameter name.

	string_to_date(‹string›)
	Converts a number (encoded as a string) into a date.
Returned is a table with the keys day, month, year, hour, minute and second. Example: xlsx.string_to_date("43458") results in

{
 ["day"] = "24"
 ["month"] = "12"
 ["year"] = "2018"
 ["hour"] = "0"
 ["minute"] = "0"
 ["second"] = "0"
}

http

The HTTP library is described at https://github.com/cjoudrey/gluahttp.

Schema validation

A special feature of the speedata Publisher is that the input language is formulated in XML. Compared to other programming languages, XML is "chatty": You always have to write end tags for the start tags:

<PlaceObject>
 ...
</PlaceObject>

Compared to a C-like syntax like

placeObject(...)

this is more typing. The solution to this "problem" is to use a text editor that is good with XML. For example, entering a start tag would immediately insert the end tag. Or, if the tag name was changed, both the start tag and the end tag would be changed at the same time. Good XML editors do much more than just make it easier to enter tags, for example, to validate code against a schema.

What is a schema?

A schema (e.g. XML-Schema or RELAX NG) contains information about the permitted structure of an XML file. For example, the schema that is supplied with the speedata Publisher contains the following information:

	
The root element must be called <Layout>

	
The child element of <PlaceObject> must be either <Barcode>, <Box>, <Circle>, <Frame>, <Image>, <Rule>, <Table>, <Textblock> or <Transformation>.

	
The attribute valign in the table row can be one of the values top, middle, or bottom

	
and many more

The documentation of the individual commands and the selection options is also included in the supplied schematic. A good XML editor can import such a schema and make it much easier for the user to enter the source code. The input with a good schema is a lot of fun and has some advantages over the classic text editor:

	
Syntax errors are displayed immediately

	
Commands (tags) do not have to be entered completely, because the editor offers an auto-complete function

	
The attributes are immediately checked for meaningful values

	
Documentation is available directly in the editor

... basically what you expect from an integrated development environment (IDE).

Selection of allowed child elements

Allowed attributes for text block

Integration of the schemata

How the schema is included depends on the editor.
The appendix contains step-by-step instructions for various editors (oXygen XML Editor or Visual Studio Code).
Further information is available in the chapter Associate XML editor with schema.

Quality assurance and PDF comparison

To assure that new versions of the speedata Publisher produce the exact the same results as before, it has a built in functionality to check for unwanted changes of behavior.

The idea is as follows: with a layout file and a “good” result (a reference PDF) the publisher can check whether the current version of the publisher gets the same result. For that one has to create a layout and data XML file, run the speedata Publisher and save the result under the name reference.pdf. When the publisher is invoked with sp compare <directory> it will re-create the document and compare, page by page, if the resulting PDF is visually the same as the previously created file reference.pdf.

Prerequisites for the comparison

The speedata publisher searches recursively from the given directory for directories that contain the file layout.xml or publisher.cfg. In these directories a new publisher run will be started. The layout file must be named layout.xml, the data file must be named data.xml unless configured otherwise in the optional configuration file publisher.cfg.

The PDF comparison requires an installation of the free software ImageMagick, that is able to manipulate and compare images without user interaction. ImageMagick is available for Windows, Mac OS X, Linux and other platforms.

How to use sp compare

Having a layout and a data file you create the PDF as usual. The easiest way is to create it directly with the name reference.pdf.

sp --jobname reference

creates the correct PDF file. With

sp --jobname reference clean

the redundant and not needed temporary files are removed. The directory now looks like this:

example/
├── data.xml
├── layout.xml
└── reference.pdf

0 directories, 3 files

When you run sp compare example, no error messages should be given in the output:

$ sp compare example/
Total run time: 1.62956s

If a future version of the publisher introduces a visual change of the layout, the output would be something like this:

$ sp compare example/
/path/to/example
Comparison failed. Bad pages are: [0]
Max delta is 2162.760009765625
Total run time: 862.898ms

The differences are available as a PNG file in the directory:

example/
├── data.xml
├── layout.xml
├── pagediff.png
├── publisher.pdf
├── reference.pdf
├── reference.png
└── source.png

The files source.png and reference.png (with documents that contain more than one page the file name looks like this: source-1.png) contain the current version and the reference as a bitmap graphic. The file pagediff.png (same numbering scheme as above) contains the highlighted differences between the two former files.

Quality assurance

The facilities of the PDF comparison can be used to create a collection of sample documents, that are typical for production documents. The practice is now to install a directory structure as follows:

qa/
├── example1
│ ├── data.xml
│ ├── layout.xml
│ └── reference.pdf
├── example2
│ ├── data.xml
│ ├── layout.xml
│ └── reference.pdf
├── example3
│ ├── data.xml
│ ├── layout.xml
│ └── reference.pdf
├── example4
│ ├── data.xml
│ ├── layout.xml
│ └── reference.pdf
└── example5
 ├── data.xml
 ├── layout.xml
 └── reference.pdf

When you run sp compare qa all subdirectories are visited and checked. In the best case the output is:

$ sp compare qa/
Total run time: 4.541458s

Troubleshooting / Debugging

The output does not always work as it should. Sometimes objects are too wide, sometimes the wrong text format is used and sometimes the table does not look as it should. In order to prevent troubleshooting from becoming too difficult, the speedata Publisher provides various aids. For this there is the command <Trace>, which offers different switches. These are (by default):

<Trace
 assignments="no"
 objects="no"
 verbose="no"
 grid="no"
 gridallocation="no"
 hyphenation="no"
 kerning="no"
 textformat="no"
 />

	assignments
	Displays the value of the assignment (<SetVariable>) on the console.

	objects
	Draws a line around individual objects.

	verbose
	Increases the output on the console (log file).

	grid
	Draws the grid. See section Grid.

	gridallocation
	Draws the grid allocation. See section Grid.

	hyphenation
	Marks the places where the words may be hyphenated.

	kerning
	Mark the place where the font inserts a kerning (HarfBuzz mode).

	text format
	Creates a tooltip above each line of text, showing the text format used. See the example in the Text Formats section.

Messages

Besides the possibilities provided by the command <Trace>, there is also the possibility to output messages in the log file:

<Message select="'Hello, world!'"/>
<Message select="sd:current-page()"/>

The output appears in the log file (publisher-protocol.xml)

<entry level="INFO" msg="Message" line="5" message="Hello, world"></entry>
<entry level="INFO" msg="Message" line="6" message="1"></entry>

The command <Message> can be instructed with error="yes" to output an error message (instead of a message). You can also specify the error code that will be returned when you exit the Publisher. See the command <Message> in the reference command in the reference.

Status File and Log File

At the end of the run, two files are written to the hard disk that can be helpful for troubleshooting. The publisher.status file is an XML file that contains the error messages and other messages (via the <Message> command). The example above with the two messages results in the following file:

<Status>
 <Errors>0</Errors>
 <Message>Hello, world!</Message>
 <Message>1</Message>
 <DurationSeconds>1</DurationSeconds>
</Status>

A more detailed log file (publisher-protocol.xml) is also written, which contains various information. You can set the log level to debug (sp --loglevel debug) to get more information.

<log loglevel="DEBUG" time="Jan 10 12:30:02" version="4.17.0" pro="yes">
 <entry level="DEBUG" msg="Start file" filename="sdini.lua"></entry>
 [...]
 <entry level="INFO" msg="Start processing"></entry>
 [...]
 <entry level="INFO" msg="Running LuaTeX version 1.15.0 on macosx"></entry>
 <entry level="DEBUG" msg="Loading hyphenation pattern" filename="hyph-en-gb.pat.txt"></entry>
 <entry level="DEBUG" msg="File lookup" source="hyph-en-gb.pat.txt" found="/home/user/work/software/publisher/src/hyphenation/hyph-en-gb.pat.txt"></entry>
 <entry level="DEBUG" msg="Language ID" id="0"></entry>
 <entry level="DEBUG" msg="Preload font" name="texgyreheros-regular.otf" size="10.0" id="1"></entry>
 <entry level="DEBUG" msg="Preload font" name="texgyreheros-regular.otf" size="8.0" id="2"></entry>
 <entry level="DEBUG" msg="Preload font" name="texgyreheros-bold.otf" size="10.0" id="3"></entry>
 <entry level="DEBUG" msg="Preload font" name="texgyreheros-bold.otf" size="8.0" id="4"></entry>
 <entry level="DEBUG" msg="Preload font" name="texgyreheros-italic.otf" size="10.0" id="5"></entry>
 <entry level="DEBUG" msg="Preload font" name="texgyreheros-italic.otf" size="8.0" id="6"></entry>
 <entry level="DEBUG" msg="Preload font" name="texgyreheros-bolditalic.otf" size="10.0" id="7"></entry>
 <entry level="DEBUG" msg="Preload font" name="texgyreheros-bolditalic.otf" size="8.0" id="8"></entry>
 <entry level="INFO" msg="Define font family" name="text" size="10.0" leading="12.0" id="1"></entry>
 <entry level="INFO" msg="speedata Publisher Pro"></entry>
 <entry level="DEBUG" msg="Checksum" filename="layout.xml" md5="d5251dcca6e8bc94331d395f9ee4ea69"></entry>
 <entry level="DEBUG" msg="File lookup" source="publisher-aux.xml" found="/home/user/work/software/publisher/spielwiese/publisher-aux.xml"></entry>
 <entry level="DEBUG" msg="Checksum" filename="publisher-aux.xml" md5="81c05dd1e89a65fc2a8a31348f5ccb7c"></entry>
 <entry level="DEBUG" msg="Using this file:" file="/home/user/work/software/publisher/spielwiese/data.xml"></entry>
 <entry level="DEBUG" msg="Checksum" filename="data.xml" md5="cbe30e8afae15473d28be5d8272ddf95"></entry>
 <entry level="INFO" msg="Create page" type="Default Page" pagenumber="1"></entry>
 <entry level="INFO" msg="Number of rows: 28, number of columns = 19"></entry>
 <entry level="INFO" msg="Create font metrics" name="texgyreheros-regular.otf" size="10.0" id="1" mode="harfbuzz"></entry>
 <entry level="DEBUG" msg="File lookup" source="texgyreheros-regular.otf" found="/home/user/work/software/publisher/fonts/texgyreheros/texgyreheros-regular.otf"></entry>
 <entry level="DEBUG" msg="PlaceObject" type="Textblock" col="1" row="1" wd="19" ht="1" page="1"></entry>
 <entry level="INFO" msg="Shipout page 1"></entry>
 <entry level="INFO" msg="Stop processing data"></entry>
 <entry level="INFO" msg="0 errors occurred"></entry>
 <entry level="INFO" msg="Duration: 0.014821 seconds"></entry>
</log>

How to get help

If all troubleshooting fails or if you have questions or comments that you want to share with others, you can use the following resources:

	
Chat on gitter: https://matrix.to/#/#speedata_publisher:gitter.im

	
Discussions on Github: https://github.com/speedata/publisher/discussions

	
Issues on Github: https://github.com/speedata/publisher/issues

	
Stackoverflow with tag speedatapublisher: https://stackoverflow.com/questions/tagged/speedatapublisher

Any feedback is welcome and helpful. Notice however: Paid support is always prioritized over unpaid support. So if you have a feature request or the need of a bug-fix, please consider buying a support plan or sponsor this project on Github to get into the fast lane.

Feature requests on Github will all be seen and written down on a non-public list but closed from Github eventually, to keep the issue list clean.

If you have a bug report: please follow the simple guideline: Make an example that is as small as possible but shows the error. Otherwise I can’t see what is going wrong.

Server mode (REST API)

The Publisher provides an interface that can be used to pass requests for document generation via HTTP. The server mode is started with

sp server

on the command line. The server mode offers the option

	
transfer data to the server and start a run

	
Determine status of the run (is the process still running?)

	
download finished PDF files

	
Other status files to read

Server mode is intended for a non-public environment. There are no authentication methods and no mechanisms to protect documents.

The server establishes the connection on the IP address 127.0.0.1 and port 5266.
The address can be changed with the parameters address and port in the configuration file or on the command line, see the appendix about configuration.

Example of a configuration file:

[server]
port = 9999
address = 0.0.0.0
extra-dir = /var/projects/fonts:/var/projects/images
filter = convertdata.lua

An overview of all API methods follows.
The current version number of the API is 0, so all methods are addressed via http://127.0.0.1:5266/v0/...
If there will be incompatible changes in the future, these can be reached in the version number /v1/…​, the existing methods will still be accessible via /v0.

	Method	URL	Short description
	GET	/available	Return 200 to check if the server is running.
	POST	/v0/publish	Send data to the server to start a publishing run.
	GET	/v0/publish/<id>	Check if a publishing run is finished.
	GET	/v0/pdf/<id>	Wait for the completion of a PDF.
	POST	/v0/pdf	Send data and wait for the completion of a PDF.
	GET	/v0/data/<id>	Load the data.xml from the publishing run.
	GET	/v0/layout/<id>	Load the layout.xml from the publishing run
	GET	/v0/statusfile/<id>	Load the status file (publisher.status) from the publishing run.
	GET	/v0/status	Overview of the current publishing processes.
	GET	/v0/status/<id>	Overview of a publishing process.
	GET	/v0/delete/<id>	Delete a publishing run.

/available

Without version number.
Returns the HTTP status 200.

/v0/publish

If the URL is called with a POST request, the speedata Publisher expects a JSON file in the following format

{<filename>:<base64 coded content>,
 <filename>:<base64 coded content>,
 ...
 }

such as

{"layout.xml": "PD94bWwgdmVyc2lv..."
 "data.xml": "PGRhdGE+CiAgICA8Y29udGVudHM+PCFbQ0RBVEFbPHV..." }

These files are copied to an empty directory on the server and sp is called there.
The return is in the form

{"id": "752869708"}

with an HTTP status code 201 (Created).

If the JSON file is incorrect, an HTTP status code 400 (Bad
Request) is returned with the textual content of the error message, for example

illegal base64 data at input byte 0

Parameter

The following URL parameters can be specified in the POST request:

	jobname
	Sets the name of the output, which is specified when the PDF file is downloaded (HTTP header Content-Disposition).
Alternatively it is taken from the file publisher.cfg or the default publisher.

	vars
	Sets variables for the Publisher run. Specification in the form var1=value1,var2=value2,var3=value3…​, but URL-coded.

	mode
	Set the mode for the run. Specification in the form mode1,mode2,mode3…​, but URL-encoded.

Example

The request to

http://127.0.0.1:5266/v0/publish?vars=myvar%3D12345&mode=a4paper%2Cprint

sets myvar to 1234 and enables the modes a4paper and print.

/v0/publish/<id>

A GET request to this URL with an id from the POST request described above returns a JSON file with the content:

{"status": "ok",
 "path":"/path/to/publisher.pdf",
 "blob": "<base64 encoded PDF>",
 "finished": "2015-03-03T13:12:55+01:00",
 "output": "<unencoded output from the sp command>"
 }

or, in case of error, if the id is unknown:

{"status": "error", "path":"", "blob": "id unknown"}

If the PDF file has not yet been written:

{"status": "error", "path":"", "blob": "in progress"}

If any other error occurs:

{"status": "error", "path":"", "output": "some helpful output"}

The directory containing the PDF file will be deleted after this request, unless the URL contains the delete parameter with the value false.

There can be more fields in the JSON file in future versions.

/v0/pdf

A POST request to send data to the server and receive a PDF. See the data layout in the description of /v0/publish and the return codes in the section /v0/pdf/<id>.

/v0/pdf/<id>

A GET request with the id from the POST request of /v0/publish. If successful, the PDF file with status code 200 and the file name publisher.pdf is returned. The request is waiting for the publishing process to be completed. In case of an error only an error code is returned (return value and description):

	200 OK
	PDF was generated without errors

	404 Not Found
	id invalid

	406 Not Acceptable
	PDF was generated incorrectly

The directory containing the PDF file will be deleted after this request, unless the URL contains the delete parameter with the value false.

/v0/data/<id>

Returns the data file that was previously copied to the server. The format can be specified using the URL parameter format, for example http://127.0.0.1:5266/v0/data/1347678770?format=base64:

	json or JSON
	Returns a JSON file in the format {"contents":"<XML Text>"}

	base64
	Results in an XML file that is base64 encoded (PGRhdGE+CiAgICA8…​hPgo=)

	(not specified)
	Writes an XML file (<data>…​</data>)

/v0/layout/<id>

Returns the layout XML that was previously copied to the server. The format can be specified using the URL parameter format. Example as above.

	json or JSON
	Returns a JSON file in the format {"contents":"<XML Text>"}

	base64
	Results in an XML file that is base64 encoded (PGRhdGE+CiAgICA8…​hPgo=)

	(not specified)
	Writes an XML file (<Layout>…​</Layout>)

/v0/statusfile/<id>

Returns the publisher.status file created by the run. The format can be specified using the URL parameter format, (example as in /v0/data/<id>).

	json or JSON
	Returns a JSON file in the format {"contents":"<XML Text>"}.

	base64
	Results in an XML file that is base64 encoded (PGRhdGE+CiAgICA8…​hPgo=)

	(not specified)
	Writes an XML file (<Status>…​</Status>)

/v0/status

Returns the status of all publishing runs started with /v0/publish.

The returned JSON file has the following format

{
 "1997009134": {
 "error status": "ok",
 "result": "finished",
 "message": "no errors found",
 "finished": "2016-05-23T11:14:14+02:00"
 },
 "1997329145": {
 "error status": "ok",
 "result": "finished",
 "message": "no errors found",
 "finished": "2016-05-23T11:14:14+02:00"
 }
}

The individual fields have the same meaning as described under /v0/status/<id>.

/v0/status/<id>

Determines the status of the publisher run that was sent to /v0/publish via POST request.

The returned JSON file has the following keys:

	errorstatus
	Is the request valid? Possible answers are error and ok. If error, then the message key contains the reason for the error, the result field is irrelevant in this case. If ok, then the field result contains the value not finished if the PDF file has not yet been created.

	result
	After the PDF file has been created, the result field contains the value failed if errors occurred during PDF creation, not finished if the publishing process is still going on, otherwise ok.

	message
	Contains an informal message about the result. For example, no errors found or 2 errors occurred during publishing run.

	finished
	Contains the timestamp when the PDF was finished. Format corresponds to RFC3339, for example 2015-12-25T12:03:04+01:00.

/v0/delete/<id>

GET: Deletes the directory with this id. Returns 200 if the id exists, 404 if not.

Control of the layout when calling the Publisher

If you want to control the behavior of the speedata Publisher without changing any of the files (data.xml or layout.xml), you can do this in two different ways.
An example is a PDF that is to be output in different page formats (portrait and landscape) or that you provide a print PDF (with bleed) and an online PDF (with smaller images).

Control via variables

The idea here is to set variables to a certain value before calling them. This is done in the configuration file or on the command line. Example is the following layout (excerpt):

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Options bleed="0mm" cutmarks="no" />
 <Switch>
 <Case test="sd:variable-exists('output')">
 <Switch>
 <Case test="$output = 'print'">
 <Options bleed="3mm" cutmarks="yes" />
 </Case>
 </Switch>
 </Case>
 </Switch>
 ...
</Layout>

With

sp --var output=print

the variable output is set to the value print.
In the configuration file, the entry looks like this:

vars=output=print

Both specifications cause the second command <Options> to be executed and create bleed and crop marks.

Control via --mode

As an alternative to control via variables, it is also possible to control via the mode.
The layout above would look like this:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Options bleed="0mm" cutmarks="no" />
 <Switch>
 <Case test="sd:mode('print')">
 <Options bleed="3mm" cutmarks="yes" />
 </Case>
 </Switch>

</Layout>

On the command line, the Publisher is started like this:

sp --mode print

The specification in the configuration file is:

mode=online

The names of the mode can be chosen freely, but should not contain spaces or commas.

Several modes can be specified separated by commas:

sp --mode a,b,c

activates these three modes.

The internal variable _mode also has a comma-separated list of modes, just as specified on the command line.

<PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="$_mode"></Value>
 </Paragraph>
 </Textblock>
</PlaceObject>

outputs a,b,c for example. The order of the modes in this variable does not have to be in the order in which they were specified when the Publisher was started.

Create and use images with MetaPost

MetaPost is a programming language that can be used to create graphics.
For example, one creates from the following program code:

beginfig(1)
 for a=0 upto 9:
 draw (0,0){dir 45}..{dir -10a}(6cm,0);
 endfor
endfig;

this graphic:

MetaPost and the speedata Publisher

The idea now is to be able to use these images in the speedata Publisher as well.
To do this, you first define a graphic and then use it later in the box command:

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <!-- no beginfig() ... endfig necessary -->
 <DefineGraphic name="dottedbox">
 pickup pencircle scaled 1mm;
 draw (0,0) -- (box.width,0) -- (box.width, box.height) --
 (box.width, box.height) -- (0, box.height) -- cycle
 dashed withdots withcolor 0.7red ;
 </DefineGraphic>

 <!-- same, but uses predefined path box: -->
 <DefineGraphic name="dottedboxsimple">
 pickup pencircle scaled 1mm;
 draw box dashed withdots withcolor 0.7red ;
 </DefineGraphic>

 <Record element="data">
 <PlaceObject row="1" column="1">
 <Box height="2" width="5" graphic="dottedbox" />
 </PlaceObject>
 </Record>
</Layout>

The width of the box and the height of the box are defined with the variables box.width and box.height in MetaPost.
This allows you to adjust the graphic to the defaults in the Publisher.

The dotted lines correspond to the specifications of the box. Raster display has been turned on to make this visible.

Coordinates

The origin of the coordinate system is in the lower left corner of the box, so positive values go in the right and up direction.

Variables

Variables for MetaPost can be set with <SetVariable>.

<SetVariable
 variable="curcol"
 type="mp:rgbcolor"
 select="'colors_mycolor'"/>

The assignment is evaluated at the beginning of the MetaPost context. Thus curcol is available at the beginning of the graphics.

Predefined values

	
All colors defined in the layout can be used in MetaPost with the prefix colors.:

<DefineColor name="mycolor" value="#FF4E00"/>

<DefineGraphic name="dots">
 pickup pencircle scaled 3mm;
 for i=0 upto 3:
 draw (i * 1cm, i * 1cm) withcolor colors.mycolor ;
 endfor;
</DefineGraphic>

<Record element="data">
 <PlaceObject row="1" column="1">
 <Box height="5" width="1" graphic="dots" />
 </PlaceObject>
</Record>

	
CSS level 3 colors are defined in RGB colorspace.

	
The width and height of a box can be accessed via box.width and box.height

	
The box' path is saved in the variable box (see the example above).

	
Hans Hagen’s MetaFun macro package is included (parts of it).

	
In page types you can also access these variables:

	Variable	Description
	page.width	Page width
	page.height	Page height
	page.margin.left	Margin left
	page.margin.right	Margin right
	page.margin.top	Margin top
	page.margin.bottom	Margin bottom
	page.trim	Bleed

Text in MetaPost

sptext("Hello, world!","text","regular")

The arguments are: the text for output, the font family and the variant. The possible values for the variant are: regular, bold, italic and bolditalic.

Example usage with label:

label.top(sptext("origin","text","regular"),(0,0));

Alternatively to the verbose macro there is the short form:

defaultfontfamily := "mptext";
defaultfontstyle := "bold";

draw txt("Hello, world!");

Renders the text in the font family mptext and the variant bold.

Transparency

To get a transparency effect you can supplement a color with the keyword withalpha and a factor. This factor is between 0 (invisible) und 1 (full color).

fill box scaled 0.5 shifted (-20,-20);
fill box withcolor rebeccapurple withalpha 0.6;

MetaPost macros

The macros contained in the “plain” format are included in the speedata Publisher.
In addition, the following (partly from MetaFun).

Verschiebungen etc.

	xshifted, yshifted
	Movement in one direction.

draw unitsquare xshifted 3cm;

	xyscaled
	Scaling with different values for x and y.

draw unitsquare xyscaled (2cm,5cm);

	randomshifted
	Shift with random values.

draw unitsquare randomshifted (2cm,5cm);

	superellipsed
	Transformation to a “superellipse”.

draw box superellipsed 0.9;

	roundedsquare
	Rectangle with rounded corners.

draw roundedsquare(box.width,box.height,.25cm);

	withalpha
	Change color intensity (1.0 = full color, 0 = no color).

fill unitsquare withalpha 0.7;

	randomized
	Randomize the values. A value can be path, a pair or a color.

draw box randomized 2cm;

Paths

	box
	Rectangle from the layout with the provided width and height.

draw box;

Image commands

	drawdot
	Draw a dot at a given position.

drawdot origin;

	spcolor
	Gets a color from the previously defined colors. Can only be used with withcolor. The difference to using a color from the colors. variable is that the color space is preserved and not converted to RGB.

fill box withcolor spcolor("mycolor");

Text

	sptext
	Text with information about the font and the variant. The possible values are described under defaultfontfamily and defaultfontstyle.

draw sptext("Hello","text","bold");

	txt
	Text that uses the defaults defaultfontfamily and defaultfontstyle.

Options

	defaultfontfamily
	Font family which will be used with txt(). The family must have been previously defined in the layout.

	defaultfontstyle
	Font style used with txt(). Possible styles: regular, bold, italic, bolditalic.

MetaPost resources

There are a number of manuals and tutorials for MetaPost:

	
The MetaPost manual (mpman) can be obtained from CTAN: http://mirrors.ctan.org/systems/doc/metapost/mpman.pdf

	
Learning MetaPost by doing by André Heck: https://staff.fnwi.uva.nl/a.j.p.heck/Courses/mptut.pdf

	
MetaPost examples: http://tex.loria.fr/prod-graph/zoonekynd/metapost/metapost.html

	
A Beginner’s Guide to MetaPost for Creating High-Quality Graphics http://www.tug.org/pracjourn/2006-4/henderson/henderson.pdf

	
Puzzling graphics in MetaPost https://www.pragma-ade.com/articles/art-puzz.pdf

	
MetaFun (a macro package that is based on MetaPost - not all commands are supported by the speedata Publisher) https://www.pragma-ade.com/general/manuals/metafun-p.pdf

Cookbook

In this section concrete applications are shown, with designed data, but with requirements occurring in practice. Three chapters (Table of Contents, Index, and Page X of Y) are implemented using the same mechanism with the XML element structure (chapter Creating XML Structures).

Thumb index

Left: thumb indexes in the phone book (that still exists!). Right: Lines are less obtrusive, yet practical..

Thumb indexes are marks on the outer edge of a catalog or reference book that indicate the current chapter. A characteristic of the thumb index is that it extends beyond the right or left edge of the paper. This means that the cut edge of the paper is in the colored area, so that the color can be seen even when the paper is closed.

There is nothing special about thumb indexes at first, they are either created with boxes or lines in a certain color. An example of chapter numbers in a square box follows.

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Options bleed="3mm"/> ①

 <DefineFontfamily name="thumbindex" fontsize="15" leading="15">
 <Regular fontface="sans-bold"/>
 </DefineFontfamily>
 <Record element="data">
 <Loop select="4" variable="chapter">
 <PlaceObject column="200mm"
 row="{20 + 20 * $chapter}mm"> ②

 <Box width="1cm" height="1cm" background-color="black"
 bleed="right"/> ③
 </PlaceObject>

 ④
 <PlaceObject column="200mm" row="{20 + 20 * $chapter}mm">
 <Table width="1cm" stretch="max">
 <Tr valign="middle" minheight="1">
 <Td align="center">
 <Paragraph fontfamily="thumbindex" color="white">
 <Value select="$chapter"/>
 </Paragraph>
 </Td>
 </Tr>
 </Table>
 </PlaceObject>
 </Loop>
 </Record>
</Layout>

	
The bleed is fixed at 3mm.

	
Vertical offset. The box is 10mm high, so the distance between each box is also 10mm.

	
The box is on the right edge and protrudes into the bleed. The parameter bleed="right" is set for this. With this the box extends to the right around the bleed.

	
The chapter number is then printed.

In the example, the chapter number is stored in the variable 'chapter no.' and output in a loop.
In practice, this would of course be inserted into the page type (`AtPageShipout') and only one handle marker would be output at a time.

The green line shows the final format, the blue line the outer edge of the untrimmed paper.

Embed multipage PDF files

Embedding multiple pages of a PDF file is easy. You can use the layout function sd:number-of-pages() to determine how many pages a PDF file has.
With the <Image> command to include an image, you can specify the desired number of pages. So the pattern for including all pages of a PDF file is as follows:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <SetVariable variable="myfile" select="'multipage.pdf'"/> ①
 <Loop select="sd:number-of-pages($myfile)" variable="page"> ②
 <PlaceObject column="0mm" row="0mm">
 <Image file="{$myfile}" width="210mm" page="{$page}"/>
 </PlaceObject>
 <ClearPage/>
 </Loop>
 </Record>

</Layout>

	
First the file name is saved in the variable myfile. This is not absolutely necessary. Important are the single quotation marks within the double quotation marks of select, this will save the string multipage.pdf.

	
The loop (<Loop>) is passed through exactly as often as the PDF file has pages, the number of the loop pass is saved in the variable page.

To access the variables you need the curly brackets, because neither `file' nor `page' expects an XPath expression, but a fixed value.
In order to access the variables, you must temporarily switch to XPath mode.
This is how

file="{$myfile}"

becomes

file="multipage.pdf"

The integrated pages can of course also be "overwritten" afterwards, i.e. with a page number or an image (watermark or similar).

Layout optimization using groups

A typical case with database publishing is that you don’t know what data to expect. Text varies in length, images have different aspect ratios, the amount of data in the record varies, and so on. In order to still create a presentation that is appealing (i.e. follows certain rules), you can make queries. Besides static questions like "How many articles are in the article group?", dynamic questions can be answered.

	
How wide is the headline?

	
How high is the image?

	
Does the table still fit on the page?

are typical questions that are necessary for a sophisticated layout.

The idea is as follows: You create a virtual area that is not output to the PDF. The elements that you want to measure are then placed there. Then you can ask how large (width and height) this virtual area is and react differently to it.

Virtual areas are bracketed in <Group><Contents>…​</Contents></Group> (see the section Groups (virtual objects)).

The framework is as follows:

<Record element="data">
 <Group name="img">
 <Contents>
 ①
 <PlaceObject>
 <Image file="_samplea.pdf" width="4"/>
 </PlaceObject>
 </Contents>
 </Group>
 ②
 <Switch>
 <Case test="sd:group-height('img') > 5">
 ...
 </Case>
 <Otherwise>
 ...
 </Otherwise>
 </Switch>
</Record>

	
At the beginning the group has a width and height of 0. All objects increase the area.

	
The group now has a width of 4 and an unknown height (depending on the image). Now the height can be queried with sd:group-height() and the width with sd:group-width(). What happens in the case distinction depends on the concrete layout, of course.

The principle is always the same: the content in question is placed on a virtual area and measured. On the basis of the determined height or width, you can, for example

	
simply output the group

	
insert a page break if the group no longer fits on the page

	
recreate the group in a loop with modified parameters until a condition is met (an example of this procedure is shown in the section on Virtual Pages, No. Virtual Pages)

	
…​

Imitate bulleted lists

The Publisher does not (currently) have any special skills to create bulleted lists. This is also because they can be imitated quite easily via text formats.

To do this, you define a text format with a hanging indent and use the one with the bulleted text:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <DefineTextformat name="li" indentation="6pt" rows="-1"/>
 <Record element="data">
 <PlaceObject>
 <Textblock textformat="li">
 <Paragraph><Value>• </Value><Value select="sd:dummytext()"></Value></Paragraph>
 <Paragraph><Value>• Two</Value></Paragraph>
 <Paragraph><Value>• Three</Value></Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>

</Layout>

This works very well in practice. The obvious disadvantage is that you have to measure how wide the left edge should be.

Nested lists can be realized by using tables, but you have to keep in mind that it is not possible to wrap within the table cells.

<Record element="data">
 <PlaceObject>
 <Table stretch="max">
 <Columns>
 <Column width="5mm"/>
 <Column width="5mm"/>
 <Column width="1*"/>
 </Columns>
 <Loop select="3" variable="i">
 <Tr valign="top">
 <Td>
 <Paragraph>
 <Value select="$i"/><Value>. </Value>
 </Paragraph>
 </Td>
 <Td colspan="2">
 <Paragraph textformat="justified">
 <Value select="sd:dummytext()"/>
 </Paragraph>
 </Td>
 </Tr>
 <Loop select="3">
 <Tr valign="top">
 <Td></Td>
 <Td><Paragraph><Value>•</Value></Paragraph></Td>
 <Td><Paragraph textformat="justified">
 <Value select="sd:dummytext()"/>
 </Paragraph>
 </Td>
 </Tr>
 </Loop>
 </Loop>
 </Table>
 </PlaceObject>
</Record>

Automatically generated directories

This chapter is dedicated to the creation of directories.
There are basically two ways to create a directory.
Therefore, the next section is about the built-in mechanism of markers (<Mark>), the following sections are about the way via <Element> and <Attributes> and manually saving the data for another pass.

In order for the Publisher to run through several times, the runs parameter must be set on the command line or in the configuration file, for example with sp --runs=2 (command line) or runs = 2 (configuration file). In the section Create table of contents in one go a mechanism is shown how in some cases a directory can be created in only one run.

Markers

Markers are invisible characters that are inserted into the text.
A name is always assigned to these characters.
After the character is output on a page, you can ask the Publisher for the page number.
The structure is as follows:

<PlaceObject>
 <Textblock>
 <Action>
 <Mark select="'textstart'"/>
 </Action>
 <Paragraph>
 <Value>
 Row
 Row
 Row
 Row
 </Value>
 </Paragraph>
 </Textblock>
</PlaceObject>

After outputting the page, the page number can now be determined with sd:pagenumber('textstart').

The markers are automatically stored in an internal auxiliary file publisher.aux so that when the page numbers are scanned again with sd:pagenumber(), they are available before the page is placed.
A simple text structure is used as an example (it is the same example as in the next section):

<data>
 <chapter titel="Foreword">
 <text>...</text>
 </chapter>
 <chapter titel="Introduction">
 <text>...</text>
 </chapter>
 <chapter titel="Conclusion">
 <text>...</text>
 </chapter>
</data>

Which is output with the following layout:

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <DefineFontfamily name="title" fontsize="18" leading="20">
 <Regular fontface="sans"/>
 </DefineFontfamily>

 <Record element="data">
 <!-- This point will be completed further below -->
 <ProcessNode select="chapter"/>
 </Record>

 <Record element="chapter">
 <PlaceObject>
 <Textblock>
 <Action>
 <Mark select="@title"/>
 </Action>
 <Paragraph fontfamily="title">
 <Value select="@title"/>
 </Paragraph>
 <Paragraph>
 <Value select="text"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <ClearPage/>
 </Record>
</Layout>

The basic framework for the markers. The place for the table of contents will be extended later (see comment).

The Publisher now assigns the chapters to the page number. You can now output the directory in the next pass:

 <PlaceObject>
 <Table padding="5pt">
 <ForAll select="chapter">
 <Tr>
 <Td><Paragraph><Value select="@title"/></Paragraph></Td>
 <Td><Paragraph>
 <Value select="sd:pagenumber(@title)"/> ①
 </Paragraph></Td>
 </Tr>
 </ForAll>
 </Table>
 </PlaceObject>
 <ClearPage/>

This part is inserted into the layout above to output the table of contents.

	
In a further pass, the page numbers are available before the actual chapters are written to the following pages.

Create directories (XML structure)

In the previous chapter, directories were created about the markers.
In this chapter a mechanism is used which means a bit more manual work, but is more flexible.

The speedata Publisher can create any directory type.
Whether table of contents, article list or keyword index - all lists work on the same principle:
the necessary data (e.g. page numbers, article numbers) are explicitly stored in a separate data structure, written to disk.
The next time the Publisher is run, this data is read in and is available.

Step 1: Collecting the information

The two commands <Element> and <Attribute> are used to structure data that is read during processing.
This has already been described in the chapter Creation of XML structures.
These commands can be used to create new XML data set files.
The following structure could be useful for an article list:

<articlelist>
 <article number="1" page="10"/>
 <article number="2" page="12"/>
 <article number="3" page="14"/>
</articlelist>

To create this structure in the layout rules, it must be composed of the commands `<Element>' and `<Attributes>' as follows

<Element name="articlelist">
 <Element name="article">
 <Attribute name="number" select="1"/>
 <Attribute name="page" select="10"/>
 </Element>
 <Element name="article">
 <Attribute name="number" select="2"/>
 <Attribute name="page" select="12"/>
 </Element>
 <Element name="article">
 <Attribute name="number" select="3"/>
 <Attribute name="page" select="14"/>
 </Element>
</Element>

Step 2: Saving and loading the information

With the command <SaveDataset> this structure is saved to disk and with <LoadDataset> it is loaded again.
If the file does not exist when loading, no error is reported, because it could be the first pass where the file naturally does not yet exist.

Step 3: Processing the information

Immediately after loading, XML processing is continued with the first element of the currently loaded structure. In the example above, the following command would be searched for in the layout ruleset

<Record element="articlelist">
 ...
</Record>

This means that the actual data processing is temporarily interrupted and continued with the new data set from <LoadDataset>.

Example

This is the same example as in the previous section (Automatically generated directories). A simple data file is used as an example:

<data>
 <chapter title="Foreword">
 <text>...</text>
 </chapter>
 <chapter title="Introduction">
 <text>...</text>
 </chapter>
 <chapter title="Conclusion">
 <text>...</text>
 </chapter>
</data>

Which is output with the following layout:

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <DefineFontfamily name="title" fontsize="18" leading="20">
 <Regular fontface="sans"/>
 </DefineFontfamily>

 ①

 ②
 <Record element="data">
 <ProcessNode select="chapter"/>
 </Record>

 <Record element="chapter">
 ③
 <PlaceObject>
 <Textblock>
 <Paragraph fontfamily="title">
 <Value select="@title"/>
 </Paragraph>
 <Paragraph>
 <Value select="text"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <ClearPage/>
 </Record>
</Layout>

Basic framework for the output of a table of contents via the XML structure. The code is added during the course of the section.

	
The output of the actual table of contents is inserted here.

	
The section 'data' is extended by loading and saving the XML data for the directory

	
Here code is inserted that assembles the XML structure (see below)

Now a variable is defined (entries), which contains the information about the chapter beginnings.
The target structure should be as follows:

<tableofcontent>
 <entry chaptername="Foreword" page="2"/>
 <entry chaptername="Introduction" page="3"/>
 <entry chaptername="Conclusion" page="4"/>
</tableofcontent>

In the chapter section (point 3 in the layout above) the code is inserted at the top to fill the variable entries with the contents:

 <Record element="chapter">
 <SetVariable variable="entries">
 <Copy-of select="$entries"/>
 <Element name="entry">
 <Attribute name="chaptername" select="@title"/>
 <Attribute name="page" select="sd:current-page()"/>
 </Element>
 </SetVariable>

 <PlaceObject>
 ...

Thus, something new is added to a variable using <Copy-of>.

The structure must be loaded at the beginning and saved at the end of the run to ensure that it is always up-to-date.
If the file toc does not yet exist, the command is simply skipped.
The new section data now looks like this and is inserted at position 2 in the layout above (instead of the record existing there)

 <Record element="data">
 <LoadDataset name="toc"/>
 <SetVariable variable="entries"/>
 <ProcessNode select="chapter"/>
 <SaveDataset name="toc" elementname="tableofcontents"
 select="$entries"/>
 </Record>

On the next run, the command <LoadDataset> takes effect and opens the previously saved XML file.
The layout ruleset searches for a section for the tableofcontents element, which is the root element of the saved file.
This has to be added to the layout rules (position 1 in the layout above):

<Record element="tableofcontents">
 <PlaceObject>
 <Table padding="5pt">
 <ForAll select="entry">
 <Tr>
 <Td><Paragraph><Value select="@chaptername"/></Paragraph></Td>
 <Td><Paragraph><Value select="@page"/></Paragraph></Td>
 </Tr>
 </ForAll>
 </Table>
 </PlaceObject>
 <ClearPage/>
</Record>

A table is output with one line for each child element entry.
The subsequent page break shifts the subsequent text backwards.
This means that you have to run through the document three times before the table of contents is correct:

	
In the first pass, the data structure is compiled.

	
Afterwards the table of contents can be created, the page break shifts the content one page backwards, the data structure is updated accordingly.

	
Only in the third pass is the table of contents correct.

If you know that the table of contents will only take up one page, you can insert the page break in the first pass.
This saves you one pass.

Sorting of keyword indexes

As a rule, keyword indexes can be found at the end of a document in order to quickly locate relevant pages in printed works.
These keywords can be words or even article numbers or other designations.

In contrast to the table of contents (which is usually at the front of a publication), the data only has to be compiled; there is usually no need to save the data temporarily for the next run.

Keyword index from the example

By their nature, the examples are always somewhat contrived, and that is especially the case here.
The index is compiled differently in practice, of course.
Since only the sorting is to be shown here, the keyword and the page number are given:

<data>
 <keyword word="Giraffe" page="1"/>
 <keyword word="Garage" page="2"/>
 <keyword word="Greeting" page="3"/>
 <keyword word="Elevator" page="4"/>
</data>

The layout file consists of three sections, which are explained individually.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data"> ①
 ...
 </Record>

 <Record element="keyword"> ②
 ...
 </Record>

 <Record element="index"> ③
 ...
 </Record>
</Layout>

The framework for sorting and output of the keyword index

	
The frame that first assembles the entries, sorts and then outputs them.

	
Here the entries are stored individually in the variable indexentries.

	
The sorted entries are output in a table.

The section data is the first part from the previous listing:.

<Record element="data">
 <SetVariable variable="indexentries"/> ①
 <ProcessNode select="keyword"/>

 <SetVariable variable="index"> ②
 <Element name="index">
 <Makeindex select="$indexentries" sortkey="name" section="section"
 pagenumber="page" />
 </Element>
 </SetVariable>

 <ProcessNode select="$index"/> ③
</Record>

	
An empty variable indexentries is declared. This is filled with the individual elements in the record keyword (see below).

	
The now filled variable indexentries is supplemented by the parent element index, sorted and stored in $index.

	
Here the content of the variable $index is interpreted and executed as a data structure (see the addition below).

The command <Makeindex> sorts and groups the data passed in the attribute select.
Sorting is done using the attribute specified in sortkey.
The grouping is based on the first letter of the sort key.
The element structure, which is created with the command <Makeindex>, is as follows:

<index>
 <section name="E">
 <indexentry name="Elevator" page="4"/>
 </section>
 <section name="G">
 <indexentry name="Garage" page="2"/>
 <indexentry name="Giraffe" page="1"/>
 <indexentry name="Greeting" page="3"/>
 </section>
</index>

The section on the keyword element (insert at position 1 in the listing The framework for sorting and output of the keyword index) is kept simple, and corresponds to the “copy of” pattern (see Copy of).
Here the variable indexentries is supplemented by one entry each.

<Record element="keyword">
 <SetVariable variable="indexentries">
 <Copy-of select="$indexentries"/>
 <Element name="indexentry">
 <Attribute name="name" select="@word"/> ①
 <Attribute name="page" select="@page"/>
 </Element>
 </SetVariable>
</Record>

	
In the current publisher version, the entry that is sorted must be saved in an attribute called name.

In the last part the table is output (insert at position 3 in the listing The framework for sorting and output of the keyword index).
For each section (element section in <Makeindex>) a line in light grey is output with the sort key.
Then, for each entry within this section, a line is output with the name of the entry and the page number.

<Record element="index">
 <PlaceObject column="1">
 <Table width="3" stretch="max">
 <ForAll select="section">
 <Tr break-below="no" top-distance="10pt">
 <Td colspan="2" background-color="lightgray">
 <Paragraph><Value select="@name"></Value></Paragraph>
 </Td>
 </Tr>
 <ForAll select="indexentry">
 <Tr>
 <Td>
 <Paragraph><Value select="@name"/></Paragraph>
 </Td>
 <Td align="right">
 <Paragraph><Value select="@page"/></Paragraph>
 </Td>
 </Tr>
 </ForAll>
 </ForAll>
 </Table>
 </PlaceObject>
</Record>

Create table of contents in one go

Often enough you have documents with a table of contents that should be somewhere at the beginning of the document. The normal way with the speedata Publisher is to collect the data for the table of contents during a run-through (which sections are there? On which page do they start?). In the next run this data is then used to create the table of contents. This method was necessary until now because this information is needed before it is available.

But now PDF has a very nice feature: you can display the pages in any order.

In the simplest case, the page tree in a PDF file consists of a list of the existing pages.

It is possible to change the order of the pages afterwards by changing the list of pages.

The page tree does not have to correspond to the order of the written pages.

The interface to the speedata Publisher runs via the existing commands <InsertPages> and <SavePages>:

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <InsertPages name="table of contents" pages="1" />

 <ProcessNode select="chapter" />

 <SavePages name="table of contents">
 <PlaceObject>
 ...
 </PlaceObject>
 </SavePages>
 </Record>
</Layout>

The destination of the pages created later is marked with <InsertPages> and the actual pages are created with <SavePages>. The speedata Publisher takes care that the internal number of pages after <InsertPages> is increased by the number specified and that the number of pages in the content of <SavePages> is again adjusted.

To ensure that the page numbering is correct, the number of pages to be inserted must be known in advance. This is almost always the case with data sheets and product catalogs (the actual use case for the speedata Publisher), so in practice this is only a small limitation.

Example

This example is from the sample repository and is explained in three steps

First, a page type is defined which is the same for all pages (condition is true(), so this page is always selected).
This page type defines a text frame (`text') and displays the page number in the outer margin of the page footer.
This is only used here to check that the pages are counted correctly, because a page is moved from the end to the beginning.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Pageformat height="228pt" width="12cm" />
 <SetGrid height="12pt" nx="10"/>

 <Pagetype name="allPages" test="true()">
 <Margin left="1cm" right="1cm" top="24pt" bottom="24pt"/>
 ①
 <PositioningArea name="text">
 <PositioningFrame
 height="{sd:number-of-rows() - 2}"
 width="{sd:number-of-columns() }"
 column="1"
 row="1" />
 </PositioningArea>
 <AtPageShipout>
 ②
 <PlaceObject
 column="1"
 row="{sd:number-of-rows()}"
 valign="bottom"
 allocate="no">
 <Table stretch="max">
 <Tr>
 <Td align="{if (sd:even(sd:current-page()))
 then 'left' else 'right'}">
 <Paragraph>
 <Value select="sd:current-page()" />
 </Paragraph>
 </Td>
 </Tr>
 </Table>
 </PlaceObject>
 </AtPageShipout>
 </Pagetype>

	
The 'text' area is slightly shorter than the page so that the page number can be printed in the page footer.

	
The page number is output in a table. Depending on whether it is an even or odd page, the attribute 'align' is set to 'left' or 'right'.

The chapter section stores the page number and title of the chapter and prints the title and a few paragraphs of a dummy text.

 <Record element="chapter">
 ①
 <SetVariable variable="chapter{position()}title" select="@title" />
 <SetVariable variable="chapter{position()}page" select="sd:current-page()" />

 <Output area="text" row="1">
 <Text>
 <Paragraph>

 <Value select="@title" />

 <Action>
 ②
 <Mark select="concat('chapter',position())" pdftarget="yes" />
 </Action>
 </Paragraph>
 <Loop select="@paragraphs">
 <Paragraph>
 <Value select="sd:dummytext()" />
 </Paragraph>
 </Loop>
 </Text>
 </Output>
 <ClearPage />
 </Record>

	
The variable `chapterXtitle' behaves like an array by changing X in the variable name.

	
By pdftarget="yes" a target for internal hyperlinks is created.

Here follows the core and entry point for data processing.
After a page is reserved for the table of contents, the chapters are output and finally the table of contents is generated. The speedata Publisher inserts the directory in the correct position.

 <Record element="data">
 ①
 <InsertPages name="table of contents" pages="1" />

 ②
 <ProcessNode select="chapter" />

 ③
 <SavePages name="table of contents">
 <PlaceObject>
 <Table padding="4pt">
 <Columns>
 <Column width="7cm" />
 </Columns>
 <Loop select="count(chapter)" variable="n">
 <Tr>
 <Td>
 <Paragraph>

 <Value select="concat($n,' ' , sd:variable('chapter',$n,'title')" />
 <HSpace leader="." />
 <Value select="sd:variable('chapter',$n,'page')" />

 </Paragraph>
 </Td>
 </Tr>
 </Loop>
 </Table>
 </PlaceObject>
 </SavePages>
 </Record>
</Layout>

	
Here a page is reserved for the table of contents. The name must be identical to that of `<SavePages>'.

	
First all chapters are output

	
Now all pages of the chapter beginnings and the chapter names are known and can be output. <SavePages> creates virtual pages (in this case only one), which will be inserted at the front.

The table of contents is created in one pass and inserted at the front.

Page numbers: Page x of y

There are two ways to get the last page number.
The first is the simple way and is recommended.
The second one was the way to go until version 3.9.26 and can be used as a reference to store other data needed for subsequent runs.

The simple way: $_lastpage

Just use the internal variable $_lastpage to get the pagenumber of the last page of the previous run.
That means that you have to use at least two runs to get the correct value for the variable.
This works since version 3.9.26.

The more complicated way

To specify the length of the document in pages, a second pass of the Publisher is necessary: At the end of the first pass, the current (= last) page number is stored, which can then be used in subsequent passes.

The following example creates some pages with output in the form Page 1 of ??. This serves as a basis for the additions.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Record element="data">
 <!-- ?? is a placeholder that gets overridden -->
 <SetVariable variable="maxpages" select="'??'"/>

 <Loop select="10" variable="i">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value
 select="concat('Page ', sd:current-page(), ' of ', $maxpages)"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <SetVariable variable="lastpage" select="sd:current-page()"/>
 <ClearPage/>
 </Loop>
 </Record>
</Layout>

At the end of the last page the information can be cached for the next run using <SaveDataset>:

<SetVariable variable="attrPagenumber">
 <Attribute name="numberofpages" select="$lastpage"/>
</SetVariable>
<SaveDataset
 name="pagecount"
 elementname="pageinfo"
 attributes="$attrPagenumber"/>

<SaveDataset> expects an XML structure at
attributes can be stored in the element `<Attributes>' and, elements in `<Element>', whereby this command can in turn have `<Attributes>' as child elements.
This structure is saved to disk as XML and has the following form in this example:

<pageinfo numberofpages="10" />

At the beginning of the run, the file can now be read in if it exists (i.e. no error is generated in the first run because the file has not yet been created):

<Record element="data">
 <SetVariable variable="maxpages" select="'??'"/>
 <LoadDataset name="pagecount"/>
 ...

and in addition

<Record element="pageinfo">
 <SetVariable variable="maxpages" select="@numberofpages"/>
</Record>

The record 'pageinfo' is called when the XML file 'pagecount' is read.
Nothing else is done than overwriting the recently defined variable maxpages with the correct content.

The complete example now looks like this:

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <!-- only evaluated if the file `pagecount` is found (second run) -->
 <Record element="pageinfo">
 <SetVariable variable="maxpages" select="@numberofpages"/>
 </Record>

 <!-- start of data processing -->
 <Record element="data">
 <SetVariable variable="maxpages" select="'??'"/>
 <LoadDataset name="pagecount"/>
 <Loop select="10" variable="i">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value
 select="concat('Page ', sd:current-page(), ' of ', $maxpages)"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <SetVariable variable="lastpage" select="sd:current-page()"/>
 <ClearPage/>
 </Loop>
 <!-- Now we know the total number of pages -->
 <SetVariable variable="attrPagenumber">
 <Attribute name="numberofpages" select="$lastpage"/>
 </SetVariable>
 <SaveDataset
 name="pagecount"
 elementname="pageinfo"
 attributes="$attrPagenumber"/>
 </Record>
</Layout>

Installation instructions

The speedata Publisher can be downloaded in two versions: stable and development. Both versions are easy to use. Extensive quality assurance prevents errors from creeping in undetected. In the development version, the documentation may be behind the current status. To try it out, you can usually download the development version. The speedata Publisher also comes with a Standard and a Pro plan. The Pro plan offers additional features that are helpful for professional PDF generation.

There are three ways to install speedata Publisher:

	
Binary packages (The recommended way): Go to our download page and download the latest package for your operating system. You can unzip the file anywhere in the filesystem you want. You don’t need root/administrator rights to use the Publisher this way. There are extra installer packages for windows, if you don’t want to set the PATH variable yourself. This is the method if you want to install the speedata Publisher Pro software.

	
APT repository: If you have root or sudo rights on Debian or Ubuntu GNU/Linux (or a similar system), you can install the .deb files we have prepared from our APT repository. (For now, only the 64 bit architecture is supported.) This is very easy, just follow a few steps:
Add our GPG key to the system to make sure you get the correct software:

all on one line:
curl -fsSL
 http://de.speedata.s3.amazonaws.com/gpgkey-speedata.txt
 | sudo gpg --dearmor
 -o /usr/share/keyrings/speedata_de.gpg

Add the following file to /etc/apt/sources.list.d/speedata.list for the development version (unstable):

deb
 [arch=amd64 signed-by=/usr/share/keyrings/speedata_de.gpg]
 https://software.speedata.de/download/devel stable main

or for the main (stable) releases:

deb
 [arch=amd64 signed-by=/usr/share/keyrings/speedata_de.gpg]
 https://software.speedata.de/download/public stable main

The previous three commands and source codes entries must be on one line.

Now you can run sudo apt update and apt install speedata-publisher and have a working installation.

	
Build from source: For developers interested in contributing to speedata Publisher, the program and documentation can be built directly from source. You need to have the Go language version 1.21 or later and Lua header files installed. For example, on Debian or Ubuntu GNU/Linux, where Go is packaged as 'golang', you can use the commands:

sudo apt install build-essential git rake golang liblua5.3-dev
git clone https://github.com/speedata/publisher.git
cd publisher
rake build
rake buildlib

If the Lua libraries are in another place than /usr, you need to set the environment variable CGO_CFLAGS to something like -I/usr/local/include/lua. And for Windows you need to also set the CGO_LDFLAGS to -llua53w64 -L/luatex-bin/luatex/windows/amd64/default/ (adjust the path to the LuaTeX binary).
To build the manual and the ebook, you need asciidoctor:

sudo gem install asciidoctor
rake doc

If you are building speedata Publisher from source, you will also need to install LuaTeX manually. The recommended way is to download a binary from https://download.speedata.de/#extra and copy it into the bin/ directory of the Publisher. For example, to download and install LuaTeX 1.15 on a Linux amd64 system, you could use the commands:

wget https://download.speedata.de/files/extra/luatex_115-win-mac-linux.zip
unzip luatex_115-win-mac-linux.zip
cp luatex/linux/sdluatex bin

After installation, you can run bin/sdluatex --version to confirm the program version.

On windows, you might need the Microsoft Visual C++ compiler and the VCRuntime140.dll. The installation path of the speedata Publisher must only contain ASCII characters and must contain any accented characters.

File name in the Publisher

External files are referenced at various points in the layout, mainly in the images.
These can have the following formats:

	
Absolute path in the file system: /path/to/file.png.

	
Relative path in the file system: ../directory/file.png.

	
File within the search tree: file.png. Before starting, the current directory is searched recursively (see File organization).

	
Absolute paths under Windows like c:\Users...\file.png.

	
file scheme: file://c/Users/Joe%20User/file.png or file:///home/user/file.png.

	
http-scheme: http://placekitten.com/g/400/300 or https: https://placekitten.com/g/400/300 (Pro feature).

These file names can be used for Images, for XPath- and layoutfunctions as well as on the command line.
So it is possible to start the Publisher with

sp --dummy --data https://raw.githubusercontent.com/speedata/examples/master/technical/rotating/layout.xml

First the resource is cached on the local computer and then loaded from there.

Sometimes the backslash (\) itself must be provided with a backslash (\\). This is mostly necessary at shell level, i.e. when passing arguments when calling the speedata publisher.

speedata Publisher defaults

The speedata Publisher defines some default settings that can be changed in the layout file. These defaults concern the colors, fonts and page size and margins.

Fonts

The distribution includes the free font family TeXGyreHeros, a high quality clone of Helvetica. It comes in the variants regular, bold, italic and bolditalic. It is defined as follows:

<LoadFontfile
 name="TeXGyreHeros-Regular"
 filename="texgyreheros-regular.otf" />
<LoadFontfile
 name="TeXGyreHeros-Bold"
 filename="texgyreheros-bold.otf" />
<LoadFontfile
 name="TeXGyreHeros-Italic"
 filename="texgyreheros-italic.otf" />
<LoadFontfile
 name="TeXGyreHeros-BoldItalic"
 filename="texgyreheros-bolditalic.otf" />

<LoadFontfile
 name="CamingoCode-Bold"
 filename="CamingoCode-Bold.ttf" />
<LoadFontfile
 name="CamingoCode-BoldItalic"
 filename="CamingoCode-BoldItalic.ttf" />
<LoadFontfile
 name="CamingoCode-Italic"
 filename="CamingoCode-Italic.ttf" />
<LoadFontfile
 name="CamingoCode-Regular"
 filename="CamingoCode-Regular.ttf" />

<LoadFontfile
 name="CrimsonPro-Bold"
 filename="CrimsonPro-Bold.ttf" />
<LoadFontfile
 name="CrimsonPro-BoldItalic"
 filename="CrimsonPro-BoldItalic.ttf" />
<LoadFontfile
 name="CrimsonPro-Italic"
 filename="CrimsonPro-Italic.ttf" />
<LoadFontfile
 name="CrimsonPro-Regular"
 filename="CrimsonPro-Regular.ttf" />

The corresponding font family is defined as:

<DefineFontfamily name="text" fontsize="10" leading="12">
 <Regular fontface="TeXGyreHeros-Regular"/>
 <Bold fontface="TeXGyreHeros-Bold"/>
 <Italic fontface="TeXGyreHeros-Italic"/>
 <BoldItalic fontface="TeXGyreHeros-BoldItalic"/>
</DefineFontfamily>

and since the font family named text is taken as the default for the paragraphs, without any change the text appears in Helvetica 10pt/12pt. With re-defining the font family text you can change the document font.

The font aliases are defined for the default font:

	
TeXGyreHeros-Regular → sans

	
TeXGyreHeros-Bold → sans-bold

	
TeXGyreHeros-Italic → sans-italic

	
TeXGyreHeros-BoldItalic → sans-bolditalic

	
CrimsonPro-Regular → serif

	
CrimsonPro-Bold → serif-bold

	
CrimsonPro-Italic → serif-italic

	
CrimsonPro-BoldItalic → serif-bolditalic

	
CamingoCode-Regular → monospace

	
CamingoCode-Bold → monospace-bold

	
CamingoCode-Italic → monospace-italic

	
CamingoCode-BoldItalic → monospace-bolditalic

The OpenType features activated with the harfbuzz mode are:

	Feature	Description
	abvm	Above-base Mark Positioning
	blwm	Below-base Mark Positioning
	calt	Contextual Alternates
	ccmp	Glyph Composition/Decomposition
	clig	Contextual Ligatures
	curs	Cursive Positioning
	dist	Distances
	kern	Kerning
	locl	Localized Forms
	mark	Mark Positioning
	mkmk	Mark to Mark Positioning
	rclt	Required Contextual Alternates
	rlig	Required Ligatures

Textformats

The following text formats are predefined:

<DefineTextformat name="text" alignment="justified"/>
<DefineTextformat name="centered" alignment="centered" />
<DefineTextformat name="left" alignment="leftaligned"/>
<DefineTextformat name="right" alignment="rightaligned"/>

<DefineTextformat name="__justified" alignment="justified"/>
<DefineTextformat name="__centered" alignment="centered" />
<DefineTextformat name="__leftaligned" alignment="leftaligned"/>
<DefineTextformat name="__rightaligned" alignment="rightaligned"/>

The last four are used in tables. See the section on text formats in tables.

Page size and margin

The page size defaults to A4 (210mm × 297mm).

The master page for all pages is defined as follows:

<Pagetype name="Default Page" test="true()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
</Pagetype>

The page grid is set to 10mm × 10mm.

Colors

The known CSS colors are defined in the RGB color space. The colors 'black' and 'white' are defined in the grayscale color space. See also the command DefineColor, there the predefined colors are listed.

The special colors HKS 1-97 and many Pantone colors are already defined with their CMYK values.

Matters

There are two sections defined:

<DefineMatter name="mainmatter" label="decimal" resetbefore="yes" />
<DefineMatter name="frontmatter" label="lowercase-romannumeral" />

Running the speedata publisher on the command line

The speedata Publisher is started via the command line (also: terminal, command window).
On the one hand there are commands, on the other hand the commands can be controlled via parameters.

$ sp <Command> <Parameter> <Parameter> ...

On Windows/PowerShell you have to run sp.exe since sp is an internal command of PowerShell.

The default command is run. So the call of

$ sp

the same as

$ sp run

Besides the command run there are other commands (see below).

With

$ sp --help

you can display a list of the allowed commands and parameters.

Description of the commands

	clean
	Deletes all generated intermediate files and keeps the PDF file.

	clearcache
	Removes files from the image cache.

	compare
	Recursively check a directory for layout changes. See the topic about quality assurance.

	doc
	Opens the reference manual in the browser (local HTML files).

	list-fonts
	Lists all font files found in the Publisher directories. Together with --xml this command allows to copy&paste the output into the layout rules. See Using fonts.

	new [DIRECTORY]
	Create simple layout and data file to start. Provide optional directory.

	run
	Start publishing (default).

	server
	Run as http-api server on localhost port 5266 (configure with --address and --port). See the chapter Server mode (REST API).

	watch
	Start watchdog / hotfolder. See Starting the Publisher via the Hotfolder.

Description of the commandline parameters

	-h, --help
	Show this help

	--address=IPADDRESS
	Address to be used for the server mode. Defaults to 127.0.0.1.

	--autoopen
	Open the PDF file. Can be set in the How to configure the speedata publisher.

	--cache=METHOD
	Use cache method. One of none, fast or optimal. Default is optimal.

	-c, --config=NAME
	Read the config file with the given NAME. Default: publisher.cfg

	--credits
	Show credits and exit

	--[no-]cutmarks
	Display cutmarks in the document

	--data=NAME
	Name of the XML data file. Defaults to data.xml. Use - for STDIN (only 1 run possible).

	--dummy
	Don’t read a data file, use <data /> as input

	-x, --extra-dir=DIR
	Additional directory for file search.

	--extra-xml=NAME
	Add this file to the layout file

	--filter=FILTER
	Run Lua filter before publishing starts

	--grid
	Display background grid. Disable with --no-grid

	--ignore-case
	Ignore case when accessing files (on a case-insensitive file system) in the recursive file lookup.

	--imagecache=PATH
	Set the image cache

	--inkscape=PATH
	Set the path to the inkscape program

	--jobname=NAME
	The name of the resulting PDF file (without extension), default is publisher

	--[no-]local
	Add local directory to the search path. Default is true

	--layout=NAME
	Name of the layout file. Defaults to layout.xml

	--logfile=NAME
	Logfile for server mode. Default publisher.protocol. Use STDOUT for standard output and STDERR for standard error.

	--loglevel=LVL
	Set the log level to one of debug, info, message, warn and error. Messages from this level and above are written to the protocol file.

	--mainlanguage=NAME
	The document’s main language in locale format, for example en or en_US.

	--mode=NAME
	Set mode. Multiple modes given in a comma separated list. See Control of the layout when calling the Publisher.

	--option=OPTION
	Set a specific option that has no command line parameter.

	--outputdir=DIR
	Copy PDF and protocol to this directory.

	--pdfversion=VERSION
	Set the PDF version. Default is 1.6.

	--prepend-xml=NAME
	Add this file in front of the layout file

	--port=PORT
	Port to be used for the server mode. Defaults to 5266

	--quiet
	Run publisher in silent mode

	--runs=NUM
	Number of publishing runs

	--startpage=NUM
	The first page number

	--show-gridallocation
	Show the allocated grid cells

	-s, --suppressinfo
	Suppress optional information (timestamp) and use a fixed document ID

	--systemfonts
	Use system fonts (not Win XP)

	--tempdir=DIR
	Use this directory instead of the system temporary directory

	--trace
	Show debug messages and some tracing PDF output

	--timeout=SEC
	Exit after SEC seconds

	-v, --var=VAR=VALUE
	Set a variable for the publishing run

	--varsfile=NAME
	Set variables for the publishing run from a file with each line containing key=value pairs. Lines starting with a # are ignored.

	--verbose
	Print the messages from the log file to standard out.

	--version
	Show version information

	--wd=DIR
	Change working directory

	--xpath
	Set the XML and XPath parser to one of luxor or lxpath. Default is 'lxpath'. The old luxor is less robust and has fewer capabilities.

	--xml
	Output as (pseudo-)XML (for list-fonts)

How to configure the speedata publisher

The speedata publisher can be configured in several ways:

	
The file publisher.cfg in /etc/speedata/, in the home directory (with a leading dot) and in the current working directory (Linux, Mac)

	
The file %APPDATA%\speedata\publisher.cfg on Windows.

	
Parameters given on the command line

	
Options given in the layout file

The file publisher.cfg

The file publisher.cfg (/etc/speedata/publisher.cfg, $HOME/.publisher.cfg and in the current working directory) is a text file, that is read at the beginning of the publisher run. The default file looks like this:

data = data.xml
layout = layout.xml
autoopen = false
This is a comment
But this is not a comment
^^^ of course the line above is also a comment
#

section specific values
[section]
key = value

You can access the base directory of the project with %(projectdir)s. This is the directory with the file publisher.cfg.

All entries in the configuration file are optional.
The configuration files are read in the following order: /etc/speedata/publisher.cfg, ~/.publisher.cfg and in the current directory publisher.cfg.
The current directory can be changed on the command line with the switch --wd=…​..

The format of the file is important, otherwise it won’t be recognized. The following options are supported:

	autoopen
	if true, the publisher opens the PDF file. Default: false. The same effect can be achieved if you run sp --autoopen.

	cache
	Caching-strategy for http(s) image requests and external image processors. Use fast for file system lookup only or optimal for checking on each request. Use none for no caching.

	data
	Name of the data file (XML). If not given, the system uses data.xml.

	dummy
	If true, the system won’t read the data file, instead it uses the single element <data /> as its input.

	extra-dir
	A list of directories in the file system separated by ; (Windows) or : (Mac, Linux). These directories contain the images, fonts, source files and other assets that are used during the publisher run. Example for windows: extra-dir=c:\myfonts.

	extensionhandler
	Assignment of file extensions to converters defined in 'imagehandler'. To convert graphics on-the-fly. Example: extensionhandler="mmd:mermaid". Multiple entries are separated by semicolon. See also imagehandler. (Since version 3.9.1.)

	extraxml
	Add this XML file to the layout instructions. List of comma separated file names (extraxml=file1.xml,file2.xml).

	fontloader
	Set the fontloader to fontforge (default until version 4.16) or harfbuzz (default starting from version 4.18).

	filter
	Run the given file as an Lua-Filter. See the section Lua-Filter / pre-processing.

	fontpath
	Set the path for system fonts. On Windows this is %WINDIR%\Fonts, on Mac OS X it defaults to /Library/Fonts:/System/Library/Fonts.

	grid
	If true, the underlying grid is shown in the PDF file. For debugging purpose only.

	imagecache
	Folder for cached images (href="http://…​" and image processors). Defaults to $TMPDIR/sp/images.

	imagehandler
	Assignments of screen type to external converters. For example, imagehandler="mermaid:(/usr/bin/mmdc -i %%input%% -o %%output%%%.pdf)". The image type mermaid is converted with the program /usr/bin/mmdc and receives as input parameter -i, the input file, -o and the output file with attached file extension .pdf. The file names are replaced at runtime and generated randomly. Multiple entries are separated by semicolons. See also External Conversion Tools.

	ignore-case
	Ignore case when accessing files (on a case-insensitive file system) in the recursive file lookup.

	inkscape
	The path to the program inkscape when you need on the fly SVG to PDF conversion.

	inkscape-command
	Command line for image conversion. Version 0.92 and before needs --export-pdf and since version 1 it is --export-filename.

	jobname
	Name of the output file. Default is publisher.

	layout
	Name of the layout rule set (XML). The default name is layout.xml.

	loglevel
	Set the log level to one of debug, info, message, warn and error.

	luatex
	Path to the LuaTeX binary. Experimental! This is provided for your experiments, not for production use.

	mode
	Set the layout mode. See Control of the layout when calling the Publisher.

	opencommand
	Command that will be run to open the documentation and the PDF file. For MacOS X this should be open, for Linux xdg-open or exo-open (xfce).

	pathrewrite
	Comma separated list of entries of the form A=B which replace parts in file:///media/XYZ to file:///path/to/project/myfiles/XYZ. Useful when you have absolute paths in the data which must be changed during the publishing process.

	pdfversion
	The PDF version that gets written. For example 1.7.

	prependxml
	Add this XML file in front of the layout instructions. List of comma separated file names (prependxml=file1.xml,file2.xml).

	reportmissingglyphs
	Should requested but missing glyphs be reported as an error or as a warning? The allowed values are true, false, or warning. false disables the reporting.

	runs
	Set the number of runs.

	startpage
	Number of the first page.

	systemfonts
	If set to true, then the publisher searches for fonts in the system directory.

	tempdir
	Name of the temporary directory. Default is the system’s temp.

	timeout
	Maximum time of the publishing run. If time is exceeded, the publisher exits with status 1.

	vars
	Comma separated list of variables and values in the form var=value to set additional variables.

	verbose
	true prints the messages from the protocol file to the standard output.

	wd
	Set the current directory.

	xpath
	Set the XML module. The current default is lxpath, and the old is called luxor.

Section server (server)

	address
	IP address to which the server should open the port. Default is 127.0.0.1.

	extra-dir
	Extra directories for the publishing runs to be includes.

	filter
	Lua script to run before processing the publishing runs (like a call to sp --filter …​).

	logfile
	File name for the log. STDOUT for standard output and STDERR for standard error.

	port
	Port to which a connection can be established.

	runs
	Set the number of publishing runs for the client document.

Section Hotfolder (hotfolder)

	hotfolder
	Directory to be “watched”.

	events
	Rules which programs to run on which files.

A detailed description can be found in the Starting the Publisher via the Hotfolder section.

Command line parameters

The valid command line parameters are written on a separate page.

Options given in the layout file

The XML layout file has a command called <Options> that allows to set some parameters (tracing, default language, …)

Lenghts and units

The lengths can be given in one of these units: pp, pc, in, pt, cm, mm, dd, cc. Without the unit, lengths will be in grid cells.

	Unit	Description
	pp	Pica Point
	pc	pica (12 pp)
	in	inch (72.27 pp)
	pt	Big point (72 bp = 1 in) PostScript point, DTP-point
	cm	Centimeter
	mm	Millimeter
	dd	Didot point
	cc	cicero (12 dd)
	sp	scaled point, 1pp = 65536sp

	Unit	Unit
	1 Pica-point	0,35147 mm
	1 Pica-point	1/72,27 inch
	1 Pica-point	0.013837 inch
	1 Pica-point	0,93457 Didot-point
	1 Pica	4,2176 mm
	1 Pica	1/6 inch
	1 Pica	12 Pica point
	1 PostScript Point (Adobe, DTP-point)	1,00375001 Pica Point = 1pt
	1 mm	0,237 Pica = 2,845 Pica-point

To convert units you can use the layout function sd:tounit()

XPath and Layout Functions (old XPath module)

This page describes the old XPath parser, called “luxor”. There is a new XPath module called “lxpath”. To switch between these two, you can set the default by setting the xpath configuration, for example on the command line with

sp --xpath luxor

(the old one)

or

sp --xpath lxpath

for the new, default one. You can also set this in the configuration file.

XPath expressions

The speedata Publisher accepts XPath expressions in some attributes. These attributes are called test or select or documented as such. In all other attributes XPath expressions can be used via curly braces ({ and }). In the following example XPath expressions are used in the attribute width and in the element Value. The width of the textblock is taken from the variable $width, the contents of the paragraph is the string value of the current node.

<Textblock width="{$width}">
 <Paragraph>
 <Value select="."/>
 </Paragraph>
</Textblock>

The following XPath expressions are handled by the software:

	
Number: Return the value without change: "5"

	
Text: Return the text without change: 'hello world'

	
Arithmetic operation (*, div, idiv, +, -, mod). Example: (6 + 4.5) * 2

	
Variables. Example: $column + 2

	
Access to the current node (dot operator). Example: . + 2

	
Access to subelements. Examples: productdata, node(), *, foo/bar

	
Attribute access in the current node. Example @a

	
Attribute access in subnodes, for example foo/@bar

	
Boolean expressions: <, >, <=, >=, =, !=. Attention, the less than symbol < must be written in XML as <, the symbol > may be written as >. Example: $number > 6. Can be used in tests.

	
Simple if/then/else expressions: if (…​) then …​ else …​.

The following XPath functions are known to the system:

There are two classes of XPath functions: standard XPath functions and speedata Publisher specific ones.
The specific functions are in the namespace urn:speedata:2009/publisher/functions/en (denoted by sd: below).
The standard functions should behave like documented by the XPath 2.0 standard.

sd layout functions

	sd:allocated(x,y,<areaname>,<framenumber>)
	Return true if the grid cell is allocated, false otherwise (since 2.3.71).

	sd:alternating(<type>, <text>,<text>,..)
	On each call the next element will be returned. You can define more alternating sequences by using distinct type values. Example: sd:alternating('tbl', 'White','Gray') can be used for alternating color of table rules. To reset the state, use sd:reset-alternating(<type>).

	sd:aspectratio(<imagename>,[pagenumber],[pdfbox])
	Return the result of the division width by height of the given image. (< 1 for portrait images, > 1 for landscape). The arguments can contain a page number and a PDF box, see Specifying the page for layout functions for details.

	sd:attr(<name>, …​)
	Is the same as @name, but can be used to dynamically construct the attribute name. See example at sd:variable().

	sd:count-saved-pages(<name>)
	Return the number of saved pages from <SavePages>.

	sd:current-column(<name>)
	Return the current column. If name is given, return the column of the given frame.

	sd:current-framenumber(<name>)
	Return the current frame number of given positioning area.

	sd:current-page()
	Return the current page number.

	sd:current-row(<name>)
	Return the current row. If name is given, return the row of the given frame.

	sd:decode-base64(<contents>)
	Expect a string encoded in base64 and return the binary contents.

	sd:decode-html(<node>)
	Change text such as <i>italic</i> into HTML markup (<i>italic</i> in this case).

	sd:dimexpr(<string>)
	Deprecated Evaluate the string as a dimension with a unit. Handy if you want to add / multiply lengths. Example: "2mm + 5cm". Since version 4.5.7 you can now calculate with dimensions directly.

	sd:dummytext([<count>])
	Return a “Lorem ispum…​ ” dummy text. The count defaults to 1.

	sd:even(<number>)
	True if number is even. Example: sd:even(sd:current-page()).

	sd:file-exists(<filename or URI schema>)
	True if file exists in the current search path. Otherwise it returns false.

	sd:filecontents(<binarycontent>)
	Save the given contents into a file and return the file name.

	sd:firstmark(pagenumber)
	The first marker of the given page number. Useful for headings in dictionaries where the first and the last entry of a page is given.

	sd:first-free-row(<name>)
	Return the first free row of this area (experimental).

	sd:format-number(Number or string, thousands separator, comma separator)
	Format the number and insert thousands separators and change comma separator. Example: sd:format-number(12345.67, ',','.') returns the string 12,345.67.

	sd:format-string(object, object, …​ ,formatting instructions)
	Return a text string with the objects formatted as given by the formatting instructions. These instructions are the same as the instructions by the C function printf().

	sd:group-height(<string>[, <unit>])
	Return the given group’s height (in gridcells). See sd:group-width(…​) If provided with an optional second argument, it returns the height of the group in multiples of this unit. For example sd:group-height('mygroup', 'in') returns the group height in inches.

	sd:group-width(<string>[, <unit>])
	Return the number of gridcells of the given group’s width. The argument must be the name of an existing group. Example: sd:group-width('My group'). See sd:group-height() for description of the second parameter.

	sd:imageheight(<filename or URI schema>,[pagenumber],[pdfbox],[<unit>])
	Natural height of the image in grid cells. Attention: if the image is not found, the height of the file-not-found placeholder will be returned. Therefore you need to check in advance if the image exists. If provided with an optional second argument, it returns the height of the image in multiples of this unit. For example sd:imageheight('myimage.pdf', 'in') returns the height of 'myimage.pdf' in inches. The arguments can contain a page number and a PDF box, see Specifying the page for layout functions for details.

	sd:imagewidth(<filename or URI schema>,[pagenumber],[pdfbox],[<unit>])
	Natural width of the image in grid cells. Attention: if the image is not found, the width of the file-not-found placeholder will be returned. Therefore you need to check in advance if the image exists. If provided with an optional second argument, it returns the width of the image in multiples of this unit. For example sd:imagewidth('myimage.pdf', 'in') returns the width of myimage.pdf in inches. The arguments can contain a page number and a PDF box, see Specifying the page for layout functions for details.

	sd:keep-alternating(<type>)
	Use the current value of sd:alternating(<type>) without changing the value.

	sd:lastmark(pagenumber)
	The first marker of the given page number. Useful for headings in dictionaries where the first and the last entry of a page is given.

	sd:loremipsum()
	Same as sd:dummytext().

	`sd:markdown(<text>)
	Renders the text as markdown. See Markdown.

	sd:md5(<value>,<value>, …)
	Return the MD5 sum of the concatenation of each value as a hex string. Example: sd:md5('hello ', 'world') gives the string 5eb63bbbe01eeed093cb22bb8f5acdc3.

	sd:merge-pagenumbers(<pagenumbers>,<separator for range>,<separator for space>, [hyperlinks])
	Merge page numbers. For example the numbers "1, 3, 4, 5" are merged into 1, 3–5. Defaults for the separator for the range is an en-dash (–), default for the spacing separator is ', ' (comma, space). This function sorts the page numbers and removes duplicates. When the separator for range is empty, the page numbers are separated each with the separator for the space.
If hyperlinks is set to true(), the page numbers become active. The default is false(). The function will show the user visible page numbers, which correspond to the logical page numbers by default.

	sd:mode(<string>[,<string>…​])
	Returns true (true()) if one of the specified modes is set. A mode can be set from the command line or from the configuration file. See Control of the layout when calling the Publisher

	sd:number-of-columns()
	Number of columns in the current grid.

	sd:number-of-pages(<filename or URI schema>)
	Determines the number of pages of a (PDF-)file.

	sd:number-of-rows()
	Number of rows in the current grid.

	sd:odd(<number>)
	True if number is odd.

	sd:pagenumber(<string>)
	Get the number of the page where the given mark is placed on. See the command <Mark>.

	sd:pageheight(<unit>)
	Similar to sd:pagewidth(), just for the height.

	sd:pagewidth(<unit>)
	Get the width of the page in number of units (but without the unit). For example a page with width 210mm sd:pagewidth("mm") returns 210. This function initializes a page. (Since version 4.13.8.)

	sd:romannumeral(<number>)
	Convert the number into a lowercase Roman numeral.

	sd:randomitem(<Value>,<Value>, …)
	Return one of the values.

	sd:reset-alternating(<type>)
	Reset alternating so the next sd:alternating() starts again from the first element.

	sd:sha1(<value>,<value>, …)
	Return the SHA-1 sum of the concatenation of each value as a hex string. Example: sd:sha1('hello ', 'world') gives the string 2aae6c35c94fcfb415dbe95f408b9ce91ee846ed.

	sd:sha256(<value>,<value>, …)
	Return the SHA-256 sum of the concatenation of each value as a hex string. Example: sd:sha256('hello ', 'world') gives the string b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9.

	sd:sha512(<value>,<value>, …)
	Return the SHA-512 sum of the concatenation of each value as a hex string. Example: sd:sha512('hello ', 'world') gives the string 309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd86f989dd35bc5ff499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f.

	sd:tounit(<string>,<string>[,<number>])
	Return a scalar of the unit given in the second argument converted to the unit given in the first argument rounded to the digits in the third argument (defaults to 0 - return integer values). Example: sd:tounit('pt','1pc') returns 12, because there are 12pt in 1pc (pica point).

	sd:variable(<name>, …​)
	The same as $name. This function allows variable names to be constructed dynamically. Example: sd:variable('myvar',$num) – if $num contains the number 3, the resulting variable name is myvar3.

	sd:variable-exists(<name>)
	True if variable name exists. Example: sd:variable-exists('my_bar') checks whether $my_bar is defined (variable names in this function have to be enclosed in single quotation marks if double quotation marks are used to delimit the XPath attribute).

	sd:visible-pagenumber(<number>)
	Return the user visible page number (as defined by matters) for the given real page number.

XPath functions

	abs(<number>)
	Return the positive value of the number.

	ceiling()
	Round to the higher integer. ceiling(-1.34) returns 1, ceiling(1.34) returns 2.

	concat(<value>,<value>, …)
	Create a new text value by concatenating the arguments.

	contains(<haystack>,<needle>)
	True if haystack contains needle. contains('bana','na') returns true().

	count(<text>)
	Counts all child elements with the given name. Example: count(article) counts how many child elements with the name article exist.

	ceiling()
	Returns the smallest number with no fractional part that is not less than the value of the given argument.

	doc(<string>)
	Open the file with the given file name and return its contents.

	empty(<attribute>)
	Checks, if an attribute is (not) available.

	false()
	Return false.

	floor()
	Returns the largest number with no fractional part that is not greater than the value of the argument.

	last()
	Return the number of elements of the same named sibling elements. Not yet XPath conform.

	local-name()
	Return the local name (without namespace) of the current element.

	lower-case(<text>)
	Return the text in lowercase letters.

	matches(<text>,<regexp>[,<flags>])
	Return true if the regexp matches the text. Flags can be one of sim and are described in the spec: https://www.w3.org/TR/xpath-functions-31/#flags. Example: matches("banana", "^(.a)+$") returns true.

	max()
	Return the maximum value. max(1.1,2.2,3.3,4.4) returns 4.4.

	min()
	Return the minimum value. min(1.1,2.2,3.3,4.4) returns 1.1.

	not()
	Negates the value of the argument. Example: not(true()) returns false().

	normalize-space(<text>)
	Return the text without leading and trailing spaces. All newlines will be changed to spaces. Multiple spaces/newlines will be changed to a single space.

	position()
	Return the position of the current node.

	replace(<input>,<regexp>, <replacement>)
	Replace the input using the regular expression with the given replacement text. Example: replace('banana', 'a', 'o') yields bonono.

	round(<number>,<number>)
	Return the argument in the first parameter rounded to number of decimal places in the second parameter. The second parameter defaults to 0.

	string(<sequence>)
	Return the text value of the sequence e.g. the contents of the elements.

	string-join(<sequence>,separator)
	Return the string value of the sequence, where each element is separated by the separator.

	substring(<input>,<start>,<length>)
	Return the part of the string input that starts at start and optionally has the given length. start can be (in contrast to the XPath specification) negative which counts from the end of the input.

	string-length(<string>)
	Return the length of the string in characters. Multi-byte UTF-8 sequences are counted as 1.

	tokenize(<input>,<regexp>)
	This function returns a sequence of strings. The input text is read from left to right. When the regular expression matches the current position, the text read so far from the last match is returned. Example (from the great XPath / XSLT book by M. Key): tokenize("Go home, Jack!", "\W+") returns the sequence "Go", "home", "Jack", "".

	true()
	Return true.

	upper-case()
	Converts the text to capital letters: upper-case('text') results in TEXT.

XPath and Layout Functions (new XPath module)

This page describes the new (default) XPath parser, called “lxpath”. There is also the old XPath module called “luxor”. To switch between these two, you can set the default by setting the xpath configuration, for example on the command line with

sp --xpath luxor

(the old one)

or

sp --xpath lxpath

for the new (default) one. You can also set this in the configuration file.

What is XPath and why are there two different implementations?

The speedata Publisher’s input is data encoded in the XML format.
XML is a hierarchical data structure where there is a root element and each element can have attributes and children, that are either text or other elements.
For example you can have an element articlegroup which contains ten article elements.
Now the idea of XPath is to navigate through the XML tree and ask questions like:
give me all articles that have a certain attribute.
Or how many articles do I have in this article group?

Up to now the speedata Publisher uses an ad-hoc implementation of an XML parser that has proven to work, but which is not very robust and does not report many errors with incorrect data.
Also the XPath parser has worked mostly with regular expressions and global state, which is also not very robust.

The new implementation uses the XML parser from Go’s standard library (with a minor patch to report the input position) and an XPath implementation that is rewritten with the XPath grammar in mind.
It aims to be fully XPath 2 compliant.

The new XML/XPath implementation passes all 199 tests in the test suite, so the current state of the compatibility is promising.

When in doubt, please use the new (lxpath) XML/XPath implementation and report bugs if you find one. You will have a few benefits:

	
The overall implementation is faster.

	
There are better error messages (for example line numbers are part of error messages).

	
You can have your own function definitions.

	
The new XPath parser will be the default in speedata Publisher version 5.

XPath expressions

The speedata Publisher accepts XPath expressions in some attributes.
These attributes are called test or select or documented as such.
In all other attributes XPath expressions can be used via curly braces ({ and }).
In the following example XPath expressions are used in the attribute width and in the attribute select of the element Value.
The width of the textblock is taken from the variable $width, the contents of the paragraph is the value of the current node (whatever this is).

<Textblock width="{ $width }">
 <Paragraph>
 <Value select="."/>
 </Paragraph>
</Textblock>

The following XPath expressions are handled by the software:

	
Number: Return the value without change: "5"

	
Text: Return the text without change: 'hello world'

	
Arithmetic operation (*, div, idiv, +, -, mod). Example: (6 + 4.5) * 2

	
Variables. Example: $column + 2

	
Access to the current node (dot operator). Example: . + 2

	
Access to subelements. Examples: productdata, *, foo/bar, node(),

	
Parent nodes: ../

	
Filter in square brackets, for example article[1] selects the first article.

	
Access to subelements. Examples: productdata, *, foo/bar

	
Attribute access in the current node. Example @a

	
Attribute access in subnodes, for example foo/@bar

	
Boolean expressions: <, >, <=, >=, =, !=. Attention, the less than symbol < must be written in XML as <,
the symbol > may be written as >. Example: $number > 6. Can be used in tests.

	
if/then/else expressions: if (…​) then …​ else …​.

	
for clauses for example: for $i in (1,2,3) return $i * 2 or for $i in 1 to 3 return $i * 2.

	
The well known axis expressions like following-sibling, parent, preceding-sibling.

See the test file of lxpath if in doubt.

If you are still uncertain about XPath, please follow the good tutorial at W3Schools.
See the test file of lxpath if in doubt

The following XPath functions are known to the system:

There are three classes of XPath functions: standard XPath functions, the speedata Publisher specific ones and user defined functions.
The layout specific functions are in the namespace urn:speedata:2009/publisher/functions/en (denoted by sd: below).
The standard functions should behave like documented by the XPath 2.0 standard.

sd layout functions

	sd:allocated(x,y,<areaname>,<framenumber>)
	Return true if the grid cell is allocated, false otherwise (since 2.3.71).

	sd:alternating(<type>, <text>,<text>,..)
	On each call the next element will be returned. You can define more alternating sequences by using distinct type values. Example: sd:alternating('tbl', 'White','Gray') can be used for alternating color of table rules. To reset the state, use sd:reset-alternating(<type>).

	sd:aspectratio(<imagename>,[pagenumber],[pdfbox])
	Return the result of the division width by height of the given image. (< 1 for portrait images, > 1 for landscape). The arguments can contain a page number and a PDF box, see Specifying the page for layout functions for details.

	sd:attr(<name>, …​)
	Is the same as @name, but can be used to dynamically construct the attribute name. See example at sd:variable().

	sd:count-saved-pages(<name>)
	Return the number of saved pages from <SavePages>.

	sd:current-column(<name>)
	Return the current column. If name is given, return the column of the given frame.

	sd:current-framenumber(<name>)
	Return the current frame number of given positioning area.

	sd:current-page()
	Return the current page number.

	sd:current-row(<name>)
	Return the current row. If name is given, return the row of the given frame.

	sd:decode-base64(<contents>)
	Expect a string encoded in base64 and return the binary contents.

	sd:decode-html(<node>)
	Change text such as <i>italic</i> into HTML markup (<i>italic</i> in this case).

	sd:dimexpr(<Unit>,<Expression>)
	Interprets the expression as a calculation and return the value as a scalar in the unit. Interprets variables. For example, say that $twocm is set to the string 2cm, sd:dimexpr('cm',' (40mm + $twocm) / 2 ') returns the number 3.0.

	sd:dummytext([<count>])
	Return a “Lorem ispum…​ ” dummy text. The count defaults to 1.

	sd:even(<number>)
	True if number is even. Example: sd:even(sd:current-page()).

	sd:file-exists(<filename or URI schema>)
	True if file exists in the current search path. Otherwise it returns false.

	sd:filecontents(<binarycontent>)
	Save the given contents into a file and return the file name.

	sd:firstmark(pagenumber)
	The first marker of the given page number. Useful for headings in dictionaries where the first and the last entry of a page is given.

	sd:first-free-row(<name>)
	Return the first free row of this area (experimental).

	sd:format-number(Number or string, thousands separator, comma separator)
	Format the number and insert thousands separators and change comma separator. Example: sd:format-number(12345.67, ',','.') returns the string 12,345.67.

	sd:format-string(object, object, …​ ,formatting instructions)
	Return a text string with the objects formatted as given by the formatting instructions. These instructions are the same as the instructions by the C function printf().

	sd:group-height(<string>[, <unit>])
	Return the given group’s height (in gridcells). See sd:group-width(…​) If provided with an optional second argument, it returns the height of the group in multiples of this unit. For example sd:group-height('mygroup', 'in') returns the group height in inches.

	sd:group-width(<string>[, <unit>])
	Return the number of gridcells of the given group’s width. The argument must be the name of an existing group. Example: sd:group-width('My group'). See sd:group-height() for description of the second parameter.

	sd:imageheight(<filename or URI schema>,[pagenumber],[pdfbox],[<unit>])
	Natural height of the image in grid cells. Attention: if the image is not found, the height of the file-not-found placeholder will be returned. Therefore you need to check in advance if the image exists. If provided with an optional second argument, it returns the height of the image in multiples of this unit. For example sd:imageheight('myimage.pdf', 'in') returns the height of 'myimage.pdf' in inches. The arguments can contain a page number and a PDF box, see Specifying the page for layout functions for details.

	sd:imagewidth(<filename or URI schema>,[pagenumber],[pdfbox],[<unit>])
	Natural width of the image in grid cells. Attention: if the image is not found, the width of the file-not-found placeholder will be returned. Therefore you need to check in advance if the image exists. If provided with an optional second argument, it returns the width of the image in multiples of this unit. For example sd:imagewidth('myimage.pdf', 'in') returns the width of myimage.pdf in inches. The arguments can contain a page number and a PDF box, see Specifying the page for layout functions for details.

	sd:keep-alternating(<type>)
	Use the current value of sd:alternating(<type>) without changing the value.

	sd:lastmark(pagenumber)
	The first marker of the given page number. Useful for headings in dictionaries where the first and the last entry of a page is given.

	sd:loremipsum()
	Same as sd:dummytext().

	`sd:markdown(<text>)
	Renders the text as markdown. See Markdown.

	sd:md5(<value>,<value>, …)
	Return the MD5 sum of the concatenation of each value as a hex string. Example: sd:md5('hello ', 'world') gives the string 5eb63bbbe01eeed093cb22bb8f5acdc3.

	sd:merge-pagenumbers(<pagenumbers>,<separator for range>,<separator for space>, [hyperlinks])
	Merge page numbers. For example the numbers "1, 3, 4, 5" are merged into 1, 3–5. Defaults for the separator for the range is an en-dash (–), default for the spacing separator is ', ' (comma, space). This function sorts the page numbers and removes duplicates. When the separator for range is empty, the page numbers are separated each with the separator for the space.
If hyperlinks is set to true(), the page numbers become active. The default is false(). The function will show the user visible page numbers, which correspond to the logical page numbers by default.

	sd:mode(<string>[,<string>…​])
	Returns true (true()) if one of the specified modes is set. A mode can be set from the command line or from the configuration file. See Control of the layout when calling the Publisher

	sd:number-of-columns()
	Number of columns in the current grid.

	sd:number-of-pages(<filename or URI schema>)
	Determines the number of pages of a (PDF-)file.

	sd:number-of-rows()
	Number of rows in the current grid.

	sd:odd(<number>)
	True if number is odd.

	sd:pagenumber(<string>)
	Get the number of the page where the given mark is placed on. See the command <Mark>.

	sd:pageheight(<unit>)
	Similar to sd:pagewidth(), just for the height.

	sd:pagewidth(<unit>)
	Get the width of the page in number of units (but without the unit). For example a page with width 210mm sd:pagewidth("mm") returns 210. This function initializes a page. (Since version 4.13.8.)

	sd:romannumeral(<number>)
	Convert the number into a lowercase Roman numeral.

	sd:randomitem(<Value>,<Value>, …)
	Return one of the values.

	sd:reset-alternating(<type>)
	Reset alternating so the next sd:alternating() starts again from the first element.

	sd:sha1(<value>,<value>, …)
	Return the SHA-1 sum of the concatenation of each value as a hex string. Example: sd:sha1('hello ', 'world') gives the string 2aae6c35c94fcfb415dbe95f408b9ce91ee846ed.

	sd:sha256(<value>,<value>, …)
	Return the SHA-256 sum of the concatenation of each value as a hex string. Example: sd:sha256('hello ', 'world') gives the string b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9.

	sd:sha512(<value>,<value>, …)
	Return the SHA-512 sum of the concatenation of each value as a hex string. Example: sd:sha512('hello ', 'world') gives the string 309ecc489c12d6eb4cc40f50c902f2b4d0ed77ee511a7c7a9bcd3ca86d4cd86f989dd35bc5ff499670da34255b45b0cfd830e81f605dcf7dc5542e93ae9cd76f.

	sd:tounit(<string>,<string>[,<number>])
	Return a scalar of the unit given in the second argument converted to the unit given in the first argument rounded to the digits in the third argument (defaults to 0 - return integer values). Example: sd:tounit('pt','1pc') returns 12, because there are 12pt in 1pc (pica point).

	sd:variable(<name>, …​)
	The same as $name. This function allows variable names to be constructed dynamically. Example: sd:variable('myvar',$num) – if $num contains the number 3, the resulting variable name is myvar3.

	sd:variable-exists(<name>)
	True if variable name exists. Example: sd:variable-exists('my_bar') checks whether $my_bar is defined (variable names in this function have to be enclosed in single quotation marks if double quotation marks are used to delimit the XPath attribute).

	sd:visible-pagenumber(<number>)
	Return the user visible page number (as defined by matters) for the given real page number.

XPath functions

	abs(<number>)
	Return the positive value of the number.

	boolean(<value>)
	Return the effective boolean value of the argument.

	codepoints-to-string(<codepoints>)
	Convert the sequence of code points to a string.

	ceiling()
	Round to the higher integer. ceiling(-1.34) returns 1, ceiling(1.34) returns 2.

	concat(<value>,<value>, …)
	Create a new text value by concatenating the arguments.

	contains(<haystack>,<needle>)
	True if haystack contains needle. contains('bana','na') returns true().

	count(<text>)
	Counts all child elements with the given name. Example: count(article) counts how many child elements with the name article exist.

	empty(<sequence>)
	Checks, if the sequence is empty. For example non existing child elements or non existing attributes are “empty”.

	false()
	Return false.

	floor()
	Returns the largest number with no fractional part that is not greater than the value of the argument.

	last()
	Return the number of elements of the same named sibling elements. Not yet XPath conform.

	local-name()
	Return the local name (without namespace) of the current element.

	lower-case(<text>)
	Return the text in lowercase letters.

	matches(<text>,<regexp>[,<flags>])
	Return true if the regexp matches the text. Flags can be one of sim and are described in the spec: https://www.w3.org/TR/xpath-functions-31/#flags. Example: matches("banana", "^(.a)+$") returns true.

	max()
	Return the maximum value. max(1.1,2.2,3.3,4.4) returns 4.4.

	min()
	Return the minimum value. min(1.1,2.2,3.3,4.4) returns 1.1.

	number(<value>)
	Convert the argument to a number. Return “not a number” if the value cannot be converted.

	not()
	Negates the value of the argument. Example: not(true()) returns false().

	normalize-space(<text>)
	Return the text without leading and trailing spaces. All newlines will be changed to spaces. Multiple spaces/newlines will be changed to a single space.

	position()
	Return the position of the current node.

	replace(<input>,<regexp>, <replacement>)
	Replace the input using the regular expression with the given replacement text. Example: replace('banana', 'a', 'o') yields bonono.

	root(element)
	Return the root element of the element.

	round(<number>,<number>)
	Return the argument in the first parameter rounded to number of decimal places in the second parameter. The second parameter defaults to 0.

	ends-with (<string>, <string>)
	Return true if the first string ends with the second string. Example: ends-with ("tattoo", "too") returns true.

	starts-with (<string>, <string>)
	Return true if the first string starts with the second string. Example: starts-with ("tattoo", "tat") returns true.

	string(<sequence>)
	Return the text value of the sequence e.g. the contents of the elements.

	string-join(<sequence>,separator)
	Return the string value of the sequence, where each element is separated by the separator.

	string-length(<string>)
	Return the length of the string in characters. Multi-byte UTF-8 sequences are counted as 1.

	substring(<input>,<start>,<length>)
	Return the part of the string input that starts at start and optionally has the given length. start can be (in contrast to the XPath specification) negative which counts from the end of the input.

	substring-after(<string>,<string>])
	Return the contents of the first string, that comes after the second string. Example: substring-after ("tattoo", "tat") returns "too".

	substring-before(<string>,<string>])
	Return the contents of the first string, that comes before the second string. Example: substring-before ("tattoo", "attoo") returns "t".

	tokenize(<input>,<regexp>)
	This function returns a sequence of strings. The input text is read from left to right. When the regular expression matches the current position, the text read so far from the last match is returned. Example (from the great XPath / XSLT book by M. Key): tokenize("Go home, Jack!", "\W+") returns the sequence "Go", "home", "Jack", "".

	true()
	Return true.

	unparsed-text(<filename>)
	Returns the contents of the file without interpretation.

	upper-case()
	Converts the text to capital letters: upper-case('text') results in TEXT.

Internal variables

The Publisher sets internal variables that can be used in the layout rules.
These variables always begin with an underscore, so your own variables should not have the underscore as the first character.
Otherwise there could be collisions when assigning names.

	_bleed
	The value of the bleed.

	_jobname
	The value specified on the command line.

	_lastpage
	The number of the last page. Available after the first run. (Since version 3.9.26.)

	_last_tr_data
	The last value (data="…​") in a table line. See section Headers and footers with running sum.

	_loopcounter
	The pass in a `<Loop>' loop.

	_matter
	The current default matter for the document (mainmatter is the initial value).

	_mode
	The mode for the pass. Separated by commas.

	_pagewidth and _pageheight
	The width and height of the page. Default is 210mm and 297mm. These variables must not be used unless the page is initialized correctly (for example with placing objects on the page). It is suggested to use the variables sd:pagewidth('mm') and sd:pageheight('mm') instead.

	_page
	The name of the text area of the whole page.

Also worth mentioning:

	_samplea.pdf and _sampleb.pdf
	Image files included in the Publisher. Can be used for testing purposes.

Associate XML editor with schema

Most XML editors can provide useful input support with RELAX NG schema or with XML schema (see Schema validation).

The idea is basically always the same: either you assign a schema file to the speedata namespace (urn:speedata.de:2009/publisher/en) in principle, or you link each file to the schema separately.

Visual Studio Code

The free (and open source) text editor Visual Studio Code (short: VS Code) can be used for many programming languages thanks to numerous extensions. To use the speedata layout schema, the XML extension from Red Hat is required:

Open the extensions marketplace and search for xml. The extension from Red Hat is the right one.

This extension is controlled via so-called XML catalogues.
In these catalogs an association of namespace to a schema is created.
Two ready-made catalogs are supplied with the speedata Publisher which link the speedata namespace with the corresponding schema files.
In this way, you only have to include the catalog:

In the settings the variable xml.catalogs can be changed. This must be set to catalog-schema-en.xml or catalog-schema-en.xml. Of course the path must be adjusted. For windows this should be C:\\Users\\path\\to\\catalog.xml.

There are two different schema files, each documented in two languages. For the English documentation catalog-schema-en.xml must be used, for the German documentation catalog-schema-de.xml.

If everything worked out fine, a layout with the namespace urn:speedata.de:2009/publisher/en will get the auto-complete with description:

auto-complete with short description in the Visual Studio code.

OxygenXML

The editor oXygen XML is a special XML editor that provides excellent support for editing the layout rules.
To get this support, the schema must be assigned to the speedata layout namespace (urn:speedata.de:2009/publisher/en).

In the settings you select the assignment of the document types (Document Type Association). Then click on "New" to create a new association

In the first tab you have to click on the '+' to create an assignment.

In this window you enter the namespace of the layout (urn:speedata.de:2009/publisher/en).

Now you can set RELAX NG + Schematron and select the scheme. In the ZIP file it is located under share/schema/layoutschema-en.rng or …​-de.rng, depending on the desired language for the short description.

From now on, for every layout in the namespace

xmlns="urn:speedata.de:2009/publisher/en"

the schema should be associated with the layout.
This can be checked by the fact that a selection of commands now appears when you enter an opening angle bracket (<).

If the scheme is correctly integrated, a selection list appears as soon as a command is entered.

speedata Publisher Pro plan

The speedata Publisher is available in two plans: Standard and Pro. The Pro plan includes features that are helpful for professional applications:

	
Support via e-mail

	
servermode (REST API for local networks)

	
Starting the Publisher via the Hotfolder (for fully automatic publisher startup)

	
QR codes and barcodes

	
Embedding of ZUGFeRD invoices

	
Embedding of resources via HTTP(s), e.g. for media databases

	
bleed

Also included in the Pro plan is access to the speedata web service, which allows you to use the publisher without local installation.

A comparison of speedata Publisher Standard and Pro can be found on the product page.

How do I get the Pro plan?

	
At https://download.speedata.de/register you can create an account in the download area.

	
After successful registration you must select the appropriate plan (monthly / annual payment).

There are two ways to download the Pro plan (assuming a valid Pro plan):

	
If you are logged in to you account in the download area, then you can use the download links to download the ZIP files or the installation packages.

	
Via command line (e.g. wget or curl) you can download the package. For this you have to create a token in the login area and pass it as authentication:

curl -u sdapi_....: \
 -O https://download.speedata.de/dl/speedata-publisherpro-linux-amd64-latest.zip

oder with wget:

wget --auth-no-challenge --user sdapi_... \
 --password "" https://download.speedata.de/dl/speedata-publisherpro-linux-amd64-latest.zip

The standard packages can be downloaded as usual without login or token.

Checking the version

On the command line you can check if you have the downloaded speedata Publisher Pro with

sp --version

The output will be something like this:

Version: 4.11.8 (Pro)

Changelog

4.18

	4.18.0 (2024-04-19)
		
Release version 4.18.0

4.17

	4.17.24 (2024-04-19)
		
Add SavePages test case.

	4.17.23 (2024-04-17)
		
Fix Makeindex for new xpath mode.

	
Marginprotrusion with harfbuzz.

	4.17.22 (2024-04-12)
		
Lots of bug fixes: number(), internal variables and While in new XPath mode, single space in Harfbuzz mode (570, 573, 574).

	4.17.21 (2024-03-27)
		
Re-introduce C library to fix error on Windows (570).

	4.17.20 (2024-03-21)
		
Spacing fixes (kerning in initials, multiple non-breaking-spaces in harfbuzz mode, multiple zero width spaces).

	
Bugfixes for various layout functions in lxpath mode.

	4.17.19 (2024-03-18)
		
Fix layout functions for lxpath.

	4.17.18 (2024-03-14)
		
Re-introduce kerning in HB mode when fontforge is the default font loader.

	4.17.17 (2024-03-13)
		
sdluatex binary lookup now in PATH environment variable.

	
CGO_C/LDFLAGS override for compiling sp library.

	4.17.16 (2024-03-06)
		
Change the default harfbuzz shaper to "ot".

	
Bugfix harfbuzz and newline with some fonts (566).

	4.17.15 (2024-03-04)
		
Re-introduce status file (compatibility in server mode).

	
Update the image processing library (resize).

	4.17.14 (2024-03-03)
		
Remove status file, better error messages/exit status.

	4.17.13 (2024-03-02)
		
Remove luaglue library.

	
Log level 'notice' is between info and warn.

	4.17.12 (2024-03-01)
		
Unicode left to right and similar markers don’t give warning (565).

	4.17.11 (2024-02-29)
		
Markdown implementation.

	
Image resize does not require imageserver anymore.

	4.17.10 (2024-02-19)
		
New (pro) feature for resizing images (needs the speedata imageserver).

	
Rewrite Go/Lua XML parser (lxpath).

	4.17.9 (2024-02-12)
		
Bugfix not updating $_lastpage in luxor XML mode (561).

	4.17.8 (2024-01-29)
		
Enhance error messages.

	4.17.7 (2024-01-18)
		
Better output when process exits.

	4.17.6 (2024-01-18)
		
Remove debugging message.

	4.17.5 (2024-01-17)
		
Experimental option "xmlfile" to use intermediate files for lxpath (557).

	4.17.4 (2024-01-11)
		
Few bugfixes related to harfbuzz/lxpath (556).

	4.17.3 (2024-01-11)
		
lxpath is the new default XPath parser..

	4.17.2 (2024-01-10)
		
Make harfbuzz the default font loader.

	4.17.1 (2024-01-10)
		
Switch go Go 1.21.

	
Rewrite speedata Publisher logging/output.

	4.17.0 (2024-01-08)
		
New ZIP layout without extra sdluatex folder.

4.16

	4.16.0 (2024-01-07)
		
Release version 4.16.0.

4.15

	4.15.21 (2024-01-04)
		
Rename backgroundcolor to background-color on various elements (554).

	
Allow frame color '-' for “no color”.

	
Opacity with DefineColor and value="…​".

	
Set default schema in catalog.xml to RELAX NG.

	4.15.20 (2024-01-02)
		
Bugfix: zero width space (552).

	
Log file lookup when verbose > 0.

	4.15.19 (2023-12-23)
		
Bugfix background with Span (547).

	4.15.18 (2023-12-20)
		
Transparency with Frame border (544).

	4.15.17 (2023-12-19)
		
Line information on Message (545).

	
Transparency with Frame (544).

	4.15.16 (2023-11-28)
		
Various metapost related fixes (542, 543).

	4.15.15 (2023-11-26)
		
Fix Various bugs related to transparency (542).

	4.15.14 (2023-11-25)
		
Few bugfixes related to lxpath (DefineGraphic and ProcessNode).

	
Schema change (allow Overlay in Case).

	4.15.13 (2023-11-21)
		
Rename A/embed to embedded (522).

	4.15.12 (2023-11-15)
		
Bugfix Mark command with the new XPath parser.

	
New function sd:dimexpr() for unit calculation.

	4.15.11 (2023-11-14)
		
Overlay: fix positioning of multiple children (520).

	
Link to embedded files (522).

	
Update lxpath XPath parser.

	4.15.10 (2023-11-08)
		
Bug fix new XPath parser again (538).

	
New attribute require on Layout command.

	4.15.9 (2023-11-07)
		
Enhance new XPath parser with simple for expression.

	
Bug fix new XPath parser (537).

	4.15.8 (2023-11-02)
		
New XML/XPath parser (536).

	
Remove standalone HTML subsystem.

	4.15.7 (2023-10-21)
		
Border color with A (526).

	
Re-implement sp --ignore-case (534).

	
Not found hyphenation patterns give warning instead of error (532).

	4.15.6 (2023-10-18)
		
Bugfix for URL text disappearing (529).

	
Allow white space in image handlers (527).

	4.15.5 (2023-10-10)
		
Add new metapost command spcolor (524).

	
Allow comments in variables file (518).

	4.15.4 (2023-09-18)
		
Rewrite and extension of the MetaPost subsystem.

	4.15.3 (2023-09-07)
		
Add more Unicode spacing characters.

	4.15.2 (2023-08-18)
		
Warning for image not found on non-last Option fix (514).

	4.15.1 (2023-08-16)
		
New PDFOptions for page layout.

	4.15.0 (2023-07-17)
		
Allow tracing grid to stay on front (512).

4.14

	4.14.0 (2023-07-03)
		
Release version 4.14.

4.13

	4.13.18 (2023-06-06)
		
Bugfix: border collapse and rowspan (482).

	
Bugfix Nobreak can have only one child (455).

	
Bugfix. Span/padding and space at the beginning (506).

	4.13.17 (2023-06-05)
		
Bugfix valign and halign on PlaceObject (503).

	
Bugfix available space with grid dy > 0 (505).

	4.13.16 (2023-06-02)
		
Bugfix halign="right" with grid gap > 0 (503).

	
Add warning on duplicate file search entries (501).

	
New syntax for filename, page number and PDF box in image functions (502).

	4.13.15 (2023-05-11)
		
Bugfix with Options startpage.

	
Bugfix: Image bleed="auto" and Options trim not set.

	
Outline fonts.

	4.13.14 (2023-05-04)
		
Bug fix for *-columns in tables and minwidth.

	
Bug fix for image margin (491).

	
Frame: set border radius for all four corner (492).

	4.13.13 (2023-04-20)
		
margin-* in Image.

	
Bugfix colspan (481).

	4.13.12 (2023-03-27)
		
\r in version file (486).

	
Update dependencies.

	4.13.11 (2023-03-14)
		
Bugfix for empty aux files.

	4.13.10 (2023-03-10)
		
Special file name with colon syntax in layout functions (468).

	
B: # in URLs correctly encoded (472).

	
Set display mode only if requested (470).

	4.13.9 (2023-02-27)
		
New Column spec minwidth and new keywords for width (min and max).

	
New XPath function matches() (453).

	
Remove documenation from ZIP.

	4.13.8 (2023-02-23)
		
Two new functions for page width and page height (464).

	4.13.7 (2023-02-22)
		
Bugfix: broken hyperlink gets inserted at kern (461).

	
Fix bottom radii at Frame (459).

	4.13.6 (2023-02-20)
		
Rename graphics attribute on Td to graphic (457).

	
Remove command NewPage from schema and documentation.

	
Colon syntax for specifying page number on sd:aspectratio, sd:imagewidth and sd:imageheight (456).

	4.13.5 (2023-01-07)
		
Bugfix for sd list-fonts (454).

	
Bugfix for border with hyphens (449).

	
Specify default type for attachments (451).

	4.13.4 (2022-11-22)
		
Bugfixes calculating hashes and reading attachments (446).

	
Bugfix style at penalty (449).

	4.13.3 (2022-11-18)
		
A few bugfixes related to AttachFile.

	4.13.2 (2022-11-10)
		
Vertical shift for hyperlink anchors.

	
AttachFile can now attach other files than ZUGFeRD invoices..

	4.13.1 (2022-11-09)
		
Bugfix spacing in RTL mode (445).

	4.13.0 (2022-09-30)
		
Start with Pro plan.

4.12

	4.12.0 (2022-09-30)
		
Release version 4.12.0.

4.11

	4.11.8 (2022-09-06)
		
Suppressinfo allows creator to be set (420).

	
New attribute displaymode for PDFOptions (428).

	
Optional delay execution on SetVariable (412).

	
Add sd:sha256, sd:sha512 and sd:md5 functions (414).

	
Set border color for hyperlinks (416).

	4.11.7 (2022-08-25)
		
Fix NoBreak inside Td (410).

	
Handle command line variables with backslashes (411).

	
Allow Unicode strings in attachment description (376).

	
Correct kerning in mixed fontforge / harfbuzz paragraphs (413).

	
Fix space at end of the paragraph (392).

	4.11.6 (2022-07-25)
		
Better error handling for file lookup (407).

	4.11.5 (2022-07-15)
		
Rename the methods on command Clip (405).

	4.11.4 (2022-07-12)
		
Bugfix for URL escaping.

	4.11.3 (2022-07-12)
		
New command Clip to cut off edges from objects.

	4.11.2 (2022-07-08)
		
Various bugfixes introduced in the migration from LuaJIT/FFI.

	4.11.1 (2022-07-07)
		
Remove LuaJIT/FFI dependency.

4.10

	4.10.0 (2022-07-07)
		
Release version 4.10.

4.9

	4.9.10 (2022-07-07)
		
Bugfix: remove space between text and number (392).

	
Bugfix: named destinations and unbalanced parenthesis.

	4.9.9 (2022-07-06)
		
Filter: show output on runtime.execute.

	4.9.8 (2022-07-01)
		
Allow to set image shape on Image element.

	
Add XML decoder for lua filter.

	
Bugfix URL rendering with hyperlinks (381).

	4.9.7 (2022-06-27)
		
runtime.execute in Lua filter.

	4.9.6 (2022-06-22)
		
Only documentation updates.

	4.9.5 (2022-05-17)
		
Bugfix for long table foot on the last page (268).

	4.9.4 (2022-05-12)
		
Better fix for ZWJ (369).

	4.9.3 (2022-05-10)
		
New command line option to set the PDF version (--pdfversion).

	
Bugfix zero width joiner in Hindi texts (369).

	4.9.2 (2022-05-09)
		
Allow setting the creator of the document.

	4.9.1 (2022-05-03)
		
Fix PDFOptions overrides previous entries (367).

	
Fix ordering of bookmarks in InsertPages (366).

4.8

	4.8.0 (2022-05-02)
		
Release version 4.8.

4.7

	4.7.13 (2022-04-29)
		
Bugfix: indent and br in HTML mode (302).

	
Start-attribute with ol (HTML mode) (311).

	
Bugfix: A href und interaction="no" (362).

	4.7.12 (2022-04-28)
		
Bugfixes (sd:group-height() and HTML rendering) (364).

	
VSpace now has minheight and height attributes.

	4.7.11 (2022-04-07)
		
Allow color - in Tablerule.

	4.7.10 (2022-04-05)
		
Bugfix table split and rowsep / leading (361).

	4.7.9 (2022-04-01)
		
Bugfix transparency and multipage table (360).

	
Re-implement pathrewrite.

	4.7.8 (2022-03-24)
		
NextFrame moves cursor to first column (358).

	
URL escape hyperlinks.

	
sd:decode-html() decodes all HTML entities.

	
Bugfix ul/ol missing first entry of li (357).

	4.7.7 (2022-03-02)
		
XML parser: ignore DTD (355).

	
Schema: add NoBreak to ForAll, Case, Otherwise, Loop,…​ (356).

	4.7.6 (2022-02-21)
		
Background color (text) and kerning (353).

	4.7.5 (2022-02-20)
		
Background color and mix of rtl/ltr text (352).

	4.7.4 (2022-02-09)
		
Update to Saxon 11.

	4.7.3 (2022-01-21)
		
Bugfix unicode escape in HTML parsing (350).

	4.7.2 (2022-01-07)
		
Bugfix: table balancing and minheight=1 (348).

	4.7.1 (2021-12-17)
		
Bugfix: colspan > 1 and border-collapse (347).

4.6

	4.6.0 (2021-11-10)
		
Release version 4.6.

4.5

	4.5.19 (2021-11-04)
		
Enhanced error handling.

	4.5.18 (2021-11-02)
		
Set DYLD_LIBRARY_PATH on macOS.

	
Restrict {} xpath evaluation for non-xpath attributes (all except select, test).

	4.5.17 (2021-10-26)
		
Set the number of publishing-runs for the server.

	4.5.16 (2021-10-26)
		
Increase verbosity of sp server (sp server --verbose).

	4.5.15 (2021-10-20)
		
Add new route for REST API to send data and get PDF in one request.

	4.5.14 (2021-10-08)
		
Deprecate NewPage, use ClearPage. See 345 for details.

	4.5.13 (2021-10-07)
		
Include color profile in distribution (344).

	4.5.12 (2021-10-06)
		
Internal/Tablerule: replace filled rectangular by PDF line.

	
Set vertical excess space behavior for rowspan in tables.

	4.5.11 (2021-09-23)
		
Colored QR codes.

	4.5.10 (2021-09-13)
		
Switch back to Lua based XML reader.

	4.5.9 (2021-09-12)
		
Allow Br before Image (342)

	4.5.8 (2021-08-30)
		
Remove spurious line break in HTML (340).

	4.5.7 (2021-08-25)
		
Bugfix for self closing HTML tags (339).

	
Better length calculation in XPath expressions.

	4.5.6 (2021-07-16)
		
New layout function sd:tounit() for unit conversion.

	
PlaceObject keepposition="yes" with absolute positioning.

	4.5.5 (2021-07-06)
		
Allow SetGrid to access data.

	4.5.4 (2021-07-02)
		
HSpace at the beginning of text (338).

	4.5.3 (2021-07-02)
		
Ignore data attributes for css styling (337).

	4.5.2 (2021-06-01)
		
Handle double XInclude with the new XML parser.

	4.5.1 (2021-05-25)
		
Internal changes (named attributes, more CSS alike style names).

	
New Go based XML reader.

4.4

	4.4.1 (2021-05-25)
		
Bugfix for InsertPages (335).

	4.4.0 (2021-05-11)
		
Release version 4.4.

4.3

	4.3.21 (2021-05-11)
		
Warning for Windows users and non-ascii path names (310).

	4.3.20 (2021-05-04)
		
Bugfix for multiple NewPage (334).

	4.3.19 (2021-05-03)
		
Bugfix for InsertPages after NewPage (333).

	4.3.18 (2021-04-27)
		
Better border-collapse implementation (260, 332).

	4.3.17 (2021-04-26)
		
Various bugfixes (330, 331, 316, 317).

	4.3.16 (2021-04-16)
		
New alignment PlaceObject/hreference=center (327).

	
Bugfix: NewPage openon="…​" at end of document (329).

	
Print md5sum of XML files with --verbose.

	4.3.15 (2021-04-15)
		
New PDFOption for hyperlink borders.

	
Transparency with text and images.

	
MetaPost enhancements.

	4.3.14 (2021-03-24)
		
Change MetaPost variable names, add page.* variables.

	
Bugfix error on sd:file-exists() and external resource (again).

	4.3.13 (2021-03-23)
		
MetaPost CSS colors and bug fixes.

	
Bugfix error on sd:file-exists() and external resource.

	4.3.12 (2021-03-16)
		
Bugfix for Incscape on Windows (324).

	
Set language on Hyphenation (319).

	4.3.11 (2021-03-16)
		
Bugfix for Incscape on Windows (324).

	
Include metapost format in distribution.

	4.3.10 (2021-03-12)
		
Basic MetaPost functionality.

	4.3.9 (2021-03-10)
		
Better error message for problems running sdluatex.

	4.3.8 (2021-03-09)
		
Grow image if needed (maxwidth,maxheight set and stretch="yes") (321).

	4.3.7 (2021-03-08)
		
Bugfix visible-pagenumbers (320).

	4.3.6 (2021-02-23)
		
Bugfix Tablefoot (315).

	
Cleanup Go source organization.

	
Allow hyperlinks for Image and Box.

	4.3.5 (2021-02-12)
		
New variable for page sectioning (_matter).

	
Bugfix li/p (313).

	
sd:merge-pagenumbers() with hyperlinks.

	
New layout function sd:visible-pagenumber().

	
Link to pages (<A page="…​").

	
Document parts (frontmatter, mainmatter) for different page numbering.

	
New xpath function sd:romannumeral().

	4.3.4 (2021-02-04)
		
Set temporary directory in server mode.

	4.3.3 (2021-01-20)
		
Empty <p> in HTML mode creates an empty line (309).

	
Bugfix: space creates a new line in HTML mode (308).

	4.3.2 (2021-01-19)
		
Bugfix for newlines introduced by empty attributes (306).

	
Support for mulitple br tags in HTML (303, 305).

	
Bugfix for rowspan in table head (300).

	4.3.1 (2021-01-13)
		
$_lastpage handles final NewPage (299).

	
Empty paragraph results in newline (297).

	
Fix indentation of UL/OL, set fontfamily.

	
Harfbuzz: fix accents placement (296, 298).

	
HTML: allow br in elements (293).

	
HTML parser: handle void elements.

	
Windows 64 bit package

4.2

	4.2.0 (2021-01-09)
		
Release version 4.2

4.1

	4.1.25 (2021-01-06)
		
Rewrite command Initial (backwards incompatible change) (287).

	4.1.24 (2021-01-04)
		
Styling of li::before (286).

	
Underline after dash (291).

	
Bookmark at PlaceObject level (290).

	
Bugfix incorrect line height (289).

	4.1.23 (2020-12-15)
		
Implement li::before for alternative bullet points. (286)

	4.1.22 (2020-12-11)
		
Bugfix for right-to-left and empty strings (285).

	4.1.21 (2020-12-08)
		
Beautify version information (284).

	
Bugfix for incorrect font scaling (283).

	4.1.20 (2020-12-07)
		
Bugfix for thin lines in qrcodes (282).

	4.1.19 (2020-12-03)
		
Lots of minor changes (documentation and re-organization of internal code).

	4.1.18 (2020-11-23)
		
New options columndirection in Pagetype.

	
Bugfix for initials in rtl mode.

	
Re-organize Go files, move sp server to a separate package.

	4.1.17 (2020-11-18)
		
Fixes for bidi text/right to left text, documentation updates.

	4.1.16 (2020-11-13)
		
Bugfix for background-color and word space.

	4.1.15 (2020-11-12)
		
Some right-to-left and mixed ltr/rtl fixes.

	
Bugfix for rowspan in table heads (279, 280).

	
Remove doctype from XML catalog (this is due to a regression in VSCode/XML mode).

	
Report missing glyphs for harfbuzz mode.

	4.1.14 (2020-10-30)
		
Automatic NewPage before SavePages (forward mode).

	
Bidi algorithm (experimental).

	4.1.13 (2020-10-28)
		
Set page width and page height at Pagetype.

	
Bugfix color at end of a paragraph (276).

	4.1.12 (2020-10-27)
		
Paragraph: allow direction setting (experimental).

	
Bugfixes for harfbuzz mode.

	
Allow setting of fontloader in sp/config.

	
Higher resolution for QA images.

	
Schema fix (languages).

	4.1.11 (2020-10-22)
		
Better accents placement in harfbuzz mode (RTL).

	
Bugfix for hyphenation after a
 (274).

	
Deprecate fontface on text commands (Paragraph, Textblock, Initial, Text, Barcode, Table, Nobreak). This command will stop working in version 5.

	4.1.10 (2020-10-21)
		
Set language on Span (273).

	
Allow language short codes in XML Schema.

	
First preparations for right-to-left text.

	
Schema fix (allow XPath in Paragraph/language).

	
Bugfix textformat/margin bottom and border bottom (262).

	4.1.9 (2020-10-19)
		
Bugfix reordering bookmarks with forward pagestore.

	
Guess language/script if not explicitly set (harfbuzz mode).

	
Lazy loading of fonts.

	
Bugfix empty first table head and last table foot (271).

	
More diagnostic information on failed server mode publisher run.

	4.1.8 (2020-10-13)
		
Bugfix textformat in table cells (270).

	
Add kerning in harfbuzz mode, allow kern tracing.

	
Disable liga in harfbuzz mode.

	
Replace font CrimsonText by CrimsonPro.

	4.1.7 (2020-10-07)
		
Add basic support for simplified Chinese. (204)

	
Fix HTML whitespace handling.

	4.1.6 (2020-10-05)
		
Better padding-left and padding-right on Paragraph (fixes 267).

	
Control vertical spacing in HTML mode and HTML data.

	
Enhance harfbuzz font loader (more supported fonts).

	
Server temporary directories can start with any character.

	4.1.5 (2020-10-01)
		
Access options during the prepressing stage.

	4.1.4 (2020-10-01)
		
Bugfix ordering of ul/ol li (264).

	
Margin notes left for Paragraph.

	4.1.3 (2020-09-28)
		
Fix HTML ul/ol and li.

	
Allow xinclude in table cells (263).

	4.1.2 (2020-09-23)
		
Few bugfixes and improvements (Barcode/keepfontsize).

	4.1.1 (2020-09-14)
		
New paragraph construction mode and new HTML processing, better language support.

	4.1.0 (2020-09-08)
		
Bugfix for locale setting.

4.0

	4.0.0 (2020-09-07)
		
Release stable version 4.0.0.

3.9

	3.9.36 (2020-09-07)
		
New Option reportmissingglyphs="warning".

	3.9.35 (2020-08-26)
		
Bugfix for empty Value tag.

	3.9.34 (2020-08-24)
		
Safe require harfbuzz library, new binaries for Windows/Mac/Linux.

	3.9.33 (2020-08-23)
		
Disable harfbuzz on windows.

	3.9.32 (2020-08-21)
		
Experimental (unsupported) inclusion of harfbuzz renderer.

	3.9.31 (2020-08-16)
		
Allow interactions (hyperlinks) as a default.

	3.9.30 (2020-08-14)
		
Fix hyperlinks (no border in acrobat, make them work).

	3.9.29 (2020-08-14)
		
Bugfix for ForAll and reduced result set (261).

	3.9.28 (2020-08-03)
		
Bugfix for rowspan/colspan calculation. (259)

	3.9.27 (2020-07-31)
		
padding-left and padding-right on Paragraph. (258)

	3.9.26 (2020-07-29)
		
New xpath functions firstmark and lastmark to get the first and the last marker on a page.

	
New internal variable $_lastpage that holds the page number of the previous run.

	3.9.25 (2020-07-26)
		
Bugfix for underline color (256).

	
Enhance schema (257).

	3.9.24 (2020-07-10)
		
New <Option> randomseed.

	
Bugfix for hyperlinks at the end of a line starting with space (255).

	3.9.23 (2020-07-05)
		
Server mode: /v0/pdf/‹id› deletes the PDF file on the server after the request.

	3.9.22 (2020-07-05)
		
Server mode: add configurable filter and extra-dir, move entries to section server.

	3.9.21 (2020-07-03)
		
Lua filter runtime.find_file to get the absolute path of a resource.

	3.9.20 (2020-07-02)
		
Server mode: specify modes in the URL.

	3.9.19 (2020-07-01)
		
Enhance HTML support (margin-top, margin-bottom and other).

	3.9.18 (2020-06-25)
		
Enhance HTML support.

	3.9.17 (2020-06-22)
		
Bugfix qrcode (from upstream).

	
CSS border-radius.

	3.9.16 (2020-06-12)
		
Bugfix HTML, update documentation.

	3.9.15 (2020-06-10)
		
Update to new LuaTeX 1.12 (without visible changes).

	
New Englisch manual.

	3.9.14 (2020-05-19)
		
Various bugfixes introduced in recent development version.

	3.9.13 (2020-05-15)
		
Bugfixes related finding the executable (254).

	3.9.12 (2020-05-12)
		
Two bugfixes related to HTML mode (252 and 253).

	3.9.11 (2020-05-12)
		
New HTML mode: better table support.

	3.9.10 (2020-05-10)
		
New HTML mode: sp html myfile.html.

	
Second argument for sd:imageheight, sd:imagewidth for exact size.

	
Image as a child of Output.

	3.9.9 (2020-04-21)
		
Enhanced HTML support.

	3.9.8 (2020-04-03)
		
New option PDFOptions/showbookmarks for Adobe Acrobat.

	3.9.7 (2020-03-31)
		
Bugfix: double hyperlink in one line (251)

	
CSS: table 100% width, td: align

	
Textformat: set margin at the top of the surrounding box.

	
First (preliminary) version of the new HTML parser.

	3.9.6 (2020-03-12)
		
Table balancing: single tablerule in last frame gets into previous frame. (250)

	
Bugfix: simple HTML table (249).

	
Bugfix: html hyperlinks with widows/orphan (248).

	
Bugfix: run_saxon() fails.

	
Bugfix: backgroundcolor of table cells with defaults in Column (247).

	3.9.5 (2020-02-25)
		
Fix height calculation for cell allocation.

	3.9.4 (2020-02-14)
		
New way to call run_saxon in the preprocessing filter.

	3.9.3 (2020-02-10)
		
Set log file for server mode.

	3.9.2 (2020-01-27)
		
New option interaction to remove hyperlinks, handle U+2011 correctly.

	3.9.1 (2020-01-16)
		
External image processors and converter.

3.8

	3.8.0 (2020-01-14)
		
Release stable version 3.8.0.

3.7

	3.7.24 (2020-01-06)
		
A few bugfixes (242, 174, 239). Prepare for 3.8.

	3.7.23 (2019-12-19)
		
Add cache option "none".

	3.7.22 (2019-12-11)
		
Improvements for caching external media files.

	3.7.21 (2019-12-11)
		
Improvements for downloading assets.

	3.7.20 (2019-11-27)
		
New command line parameter: set image cache.

	3.7.19 (2019-11-25)
		
Bugfix for table balancing (243).

	3.7.18 (2019-11-22)
		
New finalizer callback and new http module in Lua filter.

	3.7.17 (2019-11-19)
		
Better error messages for external files loading (241).

	3.7.16 (2019-11-18)
		
Bugfix 2 for table balancing (240).

	3.7.15 (2019-11-05)
		
Bugfix for table balancing (240).

	3.7.14 (2019-10-31)
		
Halloween release. (Bugfix for SavePages in backward mode).

	3.7.13 (2019-10-28)
		
Update to LuaTeX version 1.11.1 for the new page_order_index callback.

	
Allow mode access via $_mode variable.

	
Remove feature “insert after” on NewPage.

	3.7.12 (2019-10-22)
		
New command line switch mode for alternative code execution.

	
Re-order pages with SavePages and InsertPages.

	3.7.11 (2019-10-09)
		
Page number on errors and warnings

	3.7.10 (2019-09-11)
		
New command 'sp new' for scaffolding.

	
Add XML Schema (XSD).

	3.7.9 (2019-09-03)
		
Allow Options to appear more than once in the layout file.

	3.7.8 (2019-08-15)
		
sd:group-width() now has a second parameter for get the exact width, just as sd:group-height().

	
Allow re-setting the page dimensions.

	
Better rotation in table cells.

	3.7.7 (2019-07-18)
		
Fallback for LoadFontfile.

	3.7.6 (2019-07-01)
		
Allow elements in Message.

	
New XPath function number().

	
Bugfix initials and line height.

	3.7.5 (2019-06-12)
		
Bugfix textformat/fill-last-line (234).

	
Bugfix valign=bottom (233).

	3.7.4 (2019-05-21)
		
Bugfix table balancing (232).

	3.7.3 (2019-05-02)
		
AttachFile: set the PDF name of the included file.

	3.7.2 (2019-04-28)
		
Bugfix: TD with align=right containing only one or more spaces (230)

	
AttachFile can select an XML node from data instead of reading from an external resource.

	3.7.1 (2019-04-02)
		
Some bug fixes (221, 225, 226, 228, 229).

3.6

	3.6.0 (2019-02-13)
		
Release version 3.6.0

3.5

	3.5.13 (2019-02-13)
		
Bugfix for valign="botton" in PlaceObject (222)

	
Fix leading in paragraphs for small fonts (221)

	
Fix URL breaking (173)

	
Fix textformat tracing (172)

	3.5.12 (2019-01-31)
		
Bugfix for table balancing and break-below=no

	3.5.11 (2019-01-27)
		
Bugfix: set row when balancing tables.

	
Row height in table balancing taken into account.

	3.5.10 (2018-12-21)
		
Various bugfixes. Remove XProc filter. New attribute clip with Frame. Update hyphenation patterns. XInclude for data. Move to Go 1.11 modules.

	3.5.9 (2018-11-29)
		
Default margin now 1cm, bugfix for dynamic table head and balance="yes".

	3.5.8 (2018-11-28)
		
Fix a few minor errors.

	3.5.7 (2018-11-21)
		
Bugfix table split and cursor movement (202).

	
Support for PDF/X-3 and PDF/X-4.

	
Basic support for PDF/UA (accessibility).

	3.5.6 (2018-11-09)
		
Better handling of rotation in table cells.

	3.5.5 (2018-10-30)
		
SVG on the fly conversion with Inkscape.

	
Optional filename in Lua-filter XML-writer.

	3.5.4 (2108-10-04)
		
New file loader allows many ways to include files.

	
Allow inclusion of files with non-ascii characters on Windows.

	3.5.3 (2018-09-25)
		
Various bugfixes (HTML-linking in data, pdf-dest link too low 198).

	3.5.2 (2018-09-18)
		
Letter spacing in Span.

	
Break-below works with Tablerule.

	
CID-keyd fonts can be used.

	
Bugfixes for upper-case(), lower-case() and replace().

	
Various bugfixes introduced by LuaTeX 1.0.7.

	3.5.1 (2018-09-05)
		
First release with dynamic library, mainly for testing.

3.4

	3.4.0 (2018-09-03)
		
Release version 3.4.0

3.3

	3.3.14 (2018-08-30)
		
Update to LuaTeX version 1.0.7

	
sp compare HTML status report

	
limit TCP connection to localhost

	3.3.13 (2018-08-22)
		
New command TableNewPage to eject a page within a table

	
Access user variables within the Lua filter

	
New xpath function lower-case()

	3.3.12 (2018-08-13)
		
Bugfix for table cell width calculation (194)

	
Ellipsis can be drawn using the circle command.

	3.3.11 (2018-08-08)
		
Bugfix for tables spanning multiple frames (191)

	
Ensure minimal length of last line of a paragraph (188)

	3.3.10 (2018-07-31)
		
sd:group-height() with a second argument, a unit.

	
Bookmarks don’t change the zoom of the PDF

	
Bugfix for NoBreak

	
New Lua implementation for the filter (yuin/gopher-lua instead of Shopify/go-lua)

	3.3.9 (2018-06-18)
		
Various bugfixes, expose $_jobname

	3.3.8 (2018-06-18)
		
SaveDataset: rename attribute filename to name.

	
Hyperlinks within documents

	
Allow bookmarks in dynamic table headers (Tr/sethead='yes')

	
XPath: fix comparison of elements and atomic values.

	3.3.7 (2018-06-13)
		
Text rotation in table cells (Td)

	3.3.6 (2018-06-01)
		
Bugfix in textformat/spacebelow (171)

	3.3.5 (2018-05-30)
		
New attribute minwidth to set the HSpace width.

	
Various bug fixes (leaders in table, documentation links, space="…​" with LoadFontfile)

	
New xpath function local-name()

	
HTML text now allows the em tag

	
“New” color model RGB for values between 0 and 255

	
Add language “French” to schema.

	3.3.4 (2018-05-16)
		
Bugfixes for ctrl-c when running sp (167) and Output/balance="yes".

	3.3.3 (2018-05-15)
		
Bugfix: allow page format taken from the data source.

	
Fix QR code generation.

	3.3.2 (2018-04-20)
		
Bugfix height calculation Output/Text and balance="yes"

	3.3.1 (2018-04-16)
		
Balance: padding-bottom and valign on last page

	
Output/Text balance="yes" and textformat/column-padding-top

3.2

	3.2.0 (2018-03-27)
		
Release version 3.2.0

3.1

	3.1.28 (2018-03-27)
		
Documentation enhancements

	3.1.27 (2018-03-23)
		
Another bugfix with Tables

	3.1.26 (2018-03-23)
		
Bugfix with Tables (166)

	
Bugfix with Ul/Li

	3.1.25 (2018-03-20)
		
Bugfix with XPath operators (165)

	
Updated the German documentation

	3.1.24 (2018-03-16)
		
New feature: Table/balance="yes"

	3.1.23 (2018-03-14)
		
Tr/minheight allows length units

	3.1.22 (2018-03-09)
		
PlaceObject: enhance absolute positioning

	
SortSequence: allow descending sort

	
More detailled setting of orphan/widow

	3.1.21 (2018-02-16)
		
Bugfix for multipage table

	
New standard fonts

	3.1.20 (2018-02-01)
		
Lot’s of font improvements, first attempt to get chinese right

	3.1.19 (2018-01-30)
		
Allow setting of PDF title and author

	3.1.18 (2018-01-29)
		
Fix fontmapping problem

	3.1.17 (2018-01-28)
		
Report glyphs missing from a font

	
exit="yes" at Message to quit a publishing run

	3.1.16 (2017-12-19)
		
Allow other namespaces in Layout file

	
Bugfix for FontFace

	3.1.15 (2017-12-07)
		
New command Span for background color

	3.1.14 (2017-12-01)
		
speedup

	3.1.13 (2017-11-30)
		
Use exeSufix for sp compare on Windows

	
Bugfix for Output/allocate="auto"

	3.1.12 (2017-11-28)
		
Bugfix for future pages

	3.1.11 (2017-11-23)
		
Add Excel reader and RelaxNG validaton

	
Add basic support for LuaTeX 1.0.4

	3.1.10 (2017-11-03)
		
Enhance Lua CSV reader

	3.1.9 (2017-10-31)
		
New Lua based pre-processing

	3.1.8 (2017-10-24)
		
New xpath function round, padding-* in Column

	3.1.7 (2017-10-22)
		
Various bugfixes (Grid, Fontface)

	3.1.6 (2017-09-27)
		
Various bugfixes

	3.1.5 (2017-09-08)
		
New feature: DefineTextformat/tab=hspace change tab into a stretching space

	3.1.4 (2017-09-06)
		
Bugfix: Image/page does not work with href

	3.1.3 (2017-08-22)
		
New xpath function sd:dimexpr() for calculation with dimensions

	3.1.2 (2017-07-31)
		
Bugfix for underline.

	3.1.1 (2017-07-28)
		
ZUGFeRD integration, new commands AttachFile and AddSearchpath

3.0

	3.0.0 (2017-07-25)
		
Release version 3.0

2.9

	2.9.15 (2017-07-12)
		
Force pagetype if provided at NewPage, strip NL/Tab at beginning / end of paragraph.

	2.9.14 (2017-06-27)
		
Allow font-family setting in CSS for custom element.

	2.9.13 (2017-06-27)
		
Bugfix numerical entities in data. New: base64 decode, filecontents.

	2.9.12 (2017-06-16)
		
Bugfix PlaceObject/hreference=right and absolute positioning

	2.9.11 (2017-05-18)
		
Lazy evaluation of defaultcolor / Pagetype, minor bugfixes.

	2.9.10 (2017-05-10)
		
New command: Groupcontents to insert a group in a Td. Bugfix XPath parser, sd:current-framenumber().

	2.9.9 (2017-05-08)
		
Lazy evaluation of Grid in Pagetype (130), bugfix nested tables (129), improved Initials (color), bugfix cursor movement (128)

	2.9.8 (2017-04-24)
		
Bugfix XML attributes with quotation marks

	2.9.7 (2017-04-16)
		
New command Initial.

	2.9.6 (2017-03-21)
		
Enhancements on Image/bleed="auto", extra allocation margin on PlaceObject

	2.9.5 (2017-03-09)
		
Absolute positioning now allows allocate="yes".

	
New internal variables _bleed, _pagewidth, _pageheight

	
New attribute bleed="…​" on Image.

	2.9.4 (2017-02-24)
		
Box with backgroundcolor="-" only allocates cells.

	2.9.3 (2017-02-20)
		
Bugfix resetmarks, new attribute defaultcolor on Pagetype, remove obsolete commands.

	2.9.2 (2017-02-10)
		
Bugfix for processing instructions in the XML file (will be ignored now)

	
New feature: style and other elemnts in data with CSS.

	2.9.1 (2017-02-08)
		
Bugfix: top-distance in Tr

2.8

	2.8.1 (2017-02-06)
		
Fix hotfolder (variable directory)

2.7

	2.7.13 (2017-02-03)
		
Use tempdir setting to calculate imagecache.

	2.7.12 (2017-01-26)
		
New command DefineFontalias

	
Bugfixes for multipage tables

	2.7.11 (2017-01-16)
		
Makeindex: make page number attribute variable

	
Bugfix: objects with ht > 0 and “jump to next row”

	
Remove images from cache when 404.

	2.7.10 (2017-01-06)
		
Allow setting of error correction level for QR-codes.

	2.7.9 (2016-11-28)
		
allowbreak=" " does not break at a hyphen character anymore.

	
NoBreak default is now 'keeptogether' which prevents a line break.

	2.7.8 (2016-11-25)
		
Change U+2011 (NON-BREAKING HYPHEN) to U+002D (HYPHEN-MINUS) and don’t insert a break.

	2.7.7 (2016-10-21)
		
Don’t clear image cache before first run

	2.7.6 (2016-10-14)
		
Better image cache - don’t re-load images during the same run.

	2.7.5 (2016-10-12)
		
New method for image caching. Rename Image/maxsize to visiblebox.

	2.7.4 (2016-10-03)
		
New command Trace for debugging selections. Remove show-* on Options.

	
Behavior change with NextRow, remove command EmptyLine, compatibility switch with Compatibility.

	
New Option: defaultarea.

	2.7.3 (2016-09-14)
		
New API /v0/statusfile/<id> to get the file publisher.status.

	2.7.2 (2016-09-14)
		
When PlaceObject goes past the right margin (for example in full width text), go to next row.

	2.7.1 (2016-09-08)
		
Fix error when fallback image is not found

	
Emtpy attributes in Attribute don’t give a table value

	2.7.0 (2016-08-18)
		
Disable German layoutrules, bugfix (104) distribution error

2.6

	2.6.1 (2016-08-18)
		
Bugfix for Mac and Linux ZIP files

2.5

	2.5.13 (2016-08-10)
		
Bugfix for large tables (> 200 pages?)

	2.5.12 (2016-08-08)
		
Bugfixes for paragraph shape, move LuaTeX binary to different directory

	2.5.11 (2016-08-02)
		
Add padding-* to Stylesheet, allow image styling with CSS (padding only), add padding-* to Image

	2.5.10 (2016-08-02)
		
Many improvements for Text/Output and allocate="yes"

	
Remove all German commands from the manual

	
New attributes for Text: fontface, color and textformat

	
Improvements to the documentation (spelling fixes), Language string "English (Great Britan)" corrected

	2.5.9 (2016-07-06)
		
Bugfix related to “jump to next area” and multipage table/

	2.5.8 (2016-07-02)
		
Bugfix get remaining height jumps to last line, even if “full”

	2.5.7 (2016-06-25)
		
Bugfix allocation on non-integer columns

	2.5.6 (2016-06-25)
		
Remove obsolete command ProcessRecord, add limit option for ProcessNode, bugfix Output/Text paragraph shape (89)

	2.5.5 (2016-06-23)
		
Various bugfixes / future objects and tables

	2.5.4 (2016-06-20)
		
Allow control over size of background-text in Td.

	2.5.3 (2016-06-18)
		
Include bugfixes from 2.4.4

	2.5.2 (2016-06-13)
		
(2.4.2) A few bugfixes related to sd:current-framenumber(), minheight in Textblock and looking for next free row.

	2.5.1 (2016-06-10)
		
Interpret <sub> and <sup> in data.

	
Bugfix: pagetype and NewPage, version assertion in Layout tag

2.4

	2.4.4 (2016-06-18)
		
Various bugfixes: leaders disappear on a linebreak, Nobreak allows setting for font family, escape attribute contents, fix for bad images.

	2.4.3 (2016-06-17)
		
Bugfix related to an improper fix in 2.4.2 / find next free row for an object

	2.4.2 (2016-06-13)
		
A few bugfixes related to sd:current-framenumber(), minheight in Textblock and looking for next free row.

	2.4.1 (2016-06-09)
		
Bugfix: pagetype and NewPage, version assertion in Layout tag

	2.4.0 (2016-06-07)
		
Release version 2.4.0

2.3

	2.3.77 (2016-06-06)
		
Fallback filename for image (in case of image not found)

	2.3.76 (2016-06-02)
		
New API /v0/layout/<id> to get the layout.xml

	2.3.75 (2016-05-31)
		
New API /v0/data/<id> to get the data.xml

	
Bugfix empty value should not make a space.

	2.3.74 (2016-05-23)
		
New API /v0/status to get all statuses

	2.3.73 (2016-05-20)
		
Allow frame number in sd:allocated()

	2.3.72 (2016-04-28)
		
Bugfix: element names with dash accpeted

	2.3.71 (2016-04-28)
		
New xpath function sd:allocated(x,y,name)

	2.3.70 (2016-04-26)
		
Messages can set error code on error

	2.3.69 (2016-04-25)
		
Bugfix indent and parshape with allocate="auto"

	2.3.68 (2016-04-08)
		
Bugfix: API /v0/pdf/<id> must wait for the pdf file to finish. Error happens with mutliple runs

	2.3.67 (2016-04-07)
		
ForAll has a new attribute: start to give the starting point (default: 1)

	2.3.66 (2016-04-05)
		
Change mechanism on image wrapping, only partly enabled.

	2.3.65 (2016-03-29)
		
Various bugfixes with HTML output and Output/Text

	2.3.64 (2016-03-21)
		
Underline in data respects CSS style

	2.3.63 (2016-03-18)
		
Bufgfix line height calculation with Output/Text and allocation = auto

	2.3.62 (2016-03-17)
		
Various bugfixes: paragraph shape, server wait until run finished

	2.3.61 (2016-03-14)
		
New feature U/dashed="yes"

	2.3.60 (2016-03-14)
		
Bugfix for HTML tables and sp --ignore-case / font files

	2.3.59 (2016-02-24)
		
Bugfix HTML tables

	2.3.58 (2016-02-22)
		
Experimental HTML tables

	2.3.57 (2016-02-19)
		
New sp option --ignore-case for case insensitive file loading

	2.3.56 (2016-02-18)
		
Bufgix Ouptut/allocate="auto"

	2.3.55 (2016-02-18)
		
halign on PlaceObject

	
Much better wrap around with Output allocate="auto".

	2.3.54 (2016-02-08)
		
New XPath function sd:randomitem(Value, Value, Value)

	2.3.53 (2016-02-06)
		
Nobreak allows to cut text with …​

	
PDF producer is set to LuaTeX, creator is set to speedata Publisher - version number

	
Various bugfixes

	2.3.52 (2016-01-21)
		
Various bugfixes: multi paragraph Output with par shape, decode-html

	2.3.51 (2016-01-18)
		
Temporary directory configurable.

	2.3.50 (2016-01-18)
		
Dashed rules

	
Leaders in HSpace

	2.3.48 (2016-01-12)
		
Server mode: id always start with a non-zero value.

	2.3.47 (2016-01-11)
		
New PDFOption Duplex

	2.3.46 (2016-01-08)
		
Vertical spacing between grid cells

	
PDF options PrintScaling and PickTrayByPDFSize

	2.3.45 (2015-12-18)
		
API call /v0/status returns time stamp-

	2.3.44 (2015-12-16)
		
Write warnings to status file

	2.3.43 (2015-12-15)
		
Options / imagenotfound: error or warning

	2.3.42 (2015-12-13)
		
Access foo/@bar attributes on sub elements

	
New shape: Circle

	2.3.41 (2015-12-10)
		
New xpath function substring()

	2.3.40 (2015-12-08)
		
Bugfix when reading a config file

	2.3.39 (2015-12-07)
		
Server mode honors jobname from publisher.cfg

	2.3.38 (2015-11-30)
		
New XPath function 'string-length()', bug fixes, prepare for LuaTeX 0.85

	2.3.37 (2015-11-19)
		
Bugfix for broken utf8/status file

	2.3.36 (2015-11-19)
		
Workaround for broken publisher.status file

	
Table and vreference=bottom works.

	2.3.35 (2015-11-06)
		
Schematron rules in RelaxNG schema

	
Image/href can omit file: scheme

	2.3.34 (2015-11-04)
		
Bugfix: configuration file requires end of line marker on last line

	2.3.33 (2015-11-04)
		
Possible bug fix with LoadDataset/Windows

	2.3.32 (2015-09-18)
		
Bugfix: height calculation in tables with row where break-below=no

	
Much better table debugging with --trace

	
Dynamic table heads can be removed

	
Action / Mark can have multiple entries

	2.3.31 (2015-09-12)
		
New xpath function 'contains()'

	2.3.30 (2015-09-08)
		
New API call /v0/delete/id to remove the publishing request

	
New xpath function sd:keep-alternating() to re-use the current alternating value.

	2.3.29 (2015-08-24)
		
Bugfix with servermode on windows

	2.3.28 (2015-08-11)
		
Textblock can have a minimum height.

	
Option crop can take a length.

	2.3.27 (2015-08-07)
		
Bugfix for Overlay command: Image can be stacked on another element.

	2.3.26 (2015-08-07)
		
New command Overlay to stack objects.

	2.3.25 (2015-08-05)
		
New command line option --extra-xml and new configuration option extraxml to add additional XML files to the layout instructions (similar to xinclude).

	
New configuration option var to add variables.

	
New server mode api parameter vars to send additional variables to the publishing process.

	
New command line option --varsfile to define more variables.

	2.3.24 (2015-06-26)
		
Add option »trimmarks«, show the trim box when show-grid is turned on.

	2.3.23 (2015-06-25)
		
Bugfix width calculation in the grid

	2.3.22 (2015-06-19)
		
Bugfix with dx and nx in SetGrid

	2.3.21 (2015-05-30)
		
New option crop for pages with a tight cropbox.

	2.3.20 (2015-04-21)
		
Bugfix: width Table and Rule and grid distance

	2.3.19 (2015-04-20)
		
PositioningFrames can now use the current data ({@attrib} for example)

	
Bugfix/workaround for an issue introduced in 2.3.18 in multi line Td cells.

	2.3.18 (2015-04-08)
		
Bugfixes: replace() and $1, $2, …​ / multi line <Td align="center">…​</Td> contents

	2.3.17 (2015-03-25)
		
Experimental garbage collection, in effect with SetVariable.

	2.3.16 (2015-03-11)
		
Command NoBreak to disable a line break within.

	2.3.15 (2015-03-09)
		
API changes: make jobname configurable through parameter, better error messages.

	2.3.14 (2015-03-04)
		
Server-mode: /v0/pdf/<id> returns the PDF

	
Server-mode: add timestamp for /v0/publish/<id>

	2.3.12 (2015-02-27)
		
New api call /available → 200 OK, /v0/publish returns 201

	2.3.11 (2015-02-26)
		
Grid distance horizontal can be set.

	2.3.10 (2015-02-25)
		
Bugfix: index entry without contents crashes the publisher.

	2.3.9 (2015-02-24)
		
Bugfixes (sp server mode protocol file, infinite loop on malformed utf8 data)

	
Empty attributes (attr="") are treated as nil. empty(@attr) now returns true().

	2.3.8 (2015-02-21)
		
Rotate (steps of 90°) for images

	
New xpath function sd:aspectratio('imgname.png')

	
Simple if/then/else expressions in XPath

	2.3.7 (2015-02-19)
		
Background text for table cells (td)

	2.3.6 (2015-02-12)
		
publisher.status file contains the (error-)messages.

	2.3.4 (2015-01-27)
		
Bugfix: spot colors apply to stroking and non-stroking operations

	2.3.3 (2015-01-26)
		
Some CSS for rule, direct color definition.

	2.3.2 (2015-01-22)
		
New server mode for remote publishing.

2.2

	2.1.36 (2015-01-15)
		
Add all CSS level 3 colors (see https://www.w3.org/TR/css-color-3/ for a list)

	2.1.35 (2014-12-19)
		
Allow bookmarks on any level (experimental)

	2.1.34 (2014-12-18)
		
New function sd:attr() to access attribute with a dynamically constructed name.

	2.1.32 (2014-12-01)
		
XML parser / XInclude takes --extra-dir into account

	2.1.28 (2014-11-11)
		
Allow specification of hyphen char in textformat.

	2.1.27 (2014-11-06)
		
New example "mail merge"

	2.1.26 (2014-10-29)
		
New command: Frame. Can be used inside PlaceObject to frame an object.

	2.1.23 (2014-10-13)
		
Rounded corners on PlaceObject / Frame

	2.1.22 (2014-10-09)
		
Transformations can be nested inside PlaceObject

	2.1.21 (2014-10-08)
		
Custom spot colors

	
Transformation origin for rotate and matrix (PlaceObject)

	2.1.20 (2014-09-16)
		
Copy-of copys does not destroy the underlying content.

	2.1.18 (2014-09-09)
		
A transformation matrix can be set on PlaceObject

	2.1.16 (2014-08-22)
		
Don’t break lines on / anymore, unless specified in allowbreaks="/".

	2.1.15 (2014-08-18)
		
Experimental server-mode (/v0/format)

	2.1.14 (2014-08-15)
		
Hyphenation = yes/no at DefineTextformat

	2.1.13 (2014-08-12)
		
Basic version of tokenize() and replace(), basic server mode.

	
Colors can have overprinting enabled.

	
Spot colors (PANTONE and HKS)

	2.1.12 (2014-07-25)
		
New command »Color« to switch to a different text color in text.

	2.1.10 (2014-07-03)
		
Change behaviour of allowbreak=".." at Paragraph. Space must be made explicit.

	
New xpath function sd:dummytext() and sd:loremipsum() for a sample text (lorem ipsum)

	2.1.9 (2014-06-27)
		
XInclude rebirth

	2.1.8 (2014-06-24)
		
Extend table rows (Tr) to re-use as table header.

	
Merge pagenumbers now accept page ranges.

	2.1.7 (2014-06-06)
		
Bugfix for table in table and alignment. align="right" didn’t work.

	2.1.6 (2014-06-05)
		
Experimental option 'allowbreak' on Paragraph to provide a list of characters where line break may occur.

	
sp --quiet for console-less output

	
Parallelise sp compare for much better performance.

	2.1.5 (2014-05-28)
		
Bugfix table cells with align=center and a fixed width.

	2.1.3 (2014-05-20)
		
Allow hyphenation in the second word in compound words such as longword-anotherlongword. Also enable line breaks after "/"

	2.1.1 (2014-05-19)
		
New implemtation of paragraph splitting, should be completely backward compatible.

	2.1.0 (2014-05-15)
		
New behaviour of contents in table cells (Td). The rules of HTML (see https://developer.mozilla.org/en-US/docs/Web/HTML/Block-level_elements - HTML block elements) are followed as far as possible.

Glossary

	Area
	See Placement Area.

	Database Publishing
	General term that describes a set of techniques for bringing (XML) data into an output format (such as PDF), often using Adobe InDesign.

	Group
	Virtual areas that start with a size of (0.0) and grow as the content grows.

	Layout function
	Functions that are structured like XPath functions and are related to layout issues. For example, these functions can be used to determine the width of groups or output the current page number.

	Layout set of rules
	An XML file with the root element <Layout> that contains layout instructions. Set of rules because this is where the rules are defined according to which the data is arranged in the PDF.

	Placement area
	Also <PositioningArea>. Contains one or more rectangular areas (text frames) that are addressed under the same name. Will be redefined for each page. The whole page has the name _page.

	Text frame
	Also called positioning frame or <PositioningFrame>. Parts of a placement area.

	Well-formed
	An XML file is well-formed if at least the following conditions are met (from Wikipedia):

	
The document contains only properly encoded legal Unicode characters.

	
None of the special syntax characters such as < and & appear except when performing their markup-delineation roles.

	
The start-tag, end-tag, and empty-element tag that delimit elements are correctly nested, with none missing and none overlapping.

	
Tag names are case-sensitive; the start-tag and end-tag must match exactly.

	
Tag names cannot contain any of the characters !"#$%&'()*+,/;<⇒?@[\]^{|}~, nor a space character, and cannot begin with “-”, “.”, or a numeric digit.

	
A single root element contains all the other elements.

	XPath
	Computer language that is specialized for data queries in XML trees. Typical questions are "What is the content of the 'name' attribute?" or "Is there a child element named 'chapter'? The language is often used together with XSLT (XSL Transformation). A subset of the XPath language is built into the Publisher.

Compatibility with other software

The speedata Publisher is licensed under the AGPL (GNU Affero General Public License), which does not provide any warranty for the functioning of software.
Nevertheless, it is speedata’s endeavor to ensure that the software runs on the most common operating systems and interacts with external software without any problems.

This section summarizes experience reports about compatibility. If something is missing or incorrect here, correction is requested (info@speedata.de).

Operating systems

	OS	Installer	Last check	Publisher version	Remarks
	macOS 10.14.4	ZIP	2021-03-17	4.3.12	
	Windows 7 64 bit	ZIP	2021-03-17	4.3.12	
	Windows Server 2012 R2	ZIP	2021-03-12	4.3.6	(1)
	Ubuntu (Docker)	ZIP	2021-03-17	4.3.12	
	Ubuntu 20.04.1 64 bit	Installer (development)	2021-03-18	4.3.12	

	
Additional requirement: Microsoft Visual C++ 2015-2019 Redistributable (x86) 14.24.28127, VCRuntime140.dll

External software

	Software	OS	Last check	Publisher version	Remarks
	Inkscape 0.92	Windows 7 64 bit	2021-03-17	4.3.12	(1)
	Inkscape 1.0.2	Windows 7 64 bit	2021-03-17	4.3.12	(2)
	Inkscape 0.92	macOS 10.14.6	2021-03-17	4.3.12	

	
Configuration in publisher.cfg : inkscape=C:\Program Files\Inkscape\bin\inkscape.com and inkscape-command=--export-pdf.

	
Configuration in publisher.cfg : inkscape=C:\Program Files\Inkscape\bin\inkscape.com and inkscape-command=--export-filename.

File formats, output

	File type	Allowed formats	Remarks
	Images	PDF, JPEG, PNG	
	Fonts	PostScript Type1, TrueType, OpenType (ttf, otf)	Not all fontloaders might support all formats.
	PDF-Output	PDF/X-3, PDF/X-4, PDF/UA	PDF/UA only partly
	ZUGFeRD	Version 1	Electronic invoice

Known problems

	
The speedata Publisher installation path on Windows must not contain non-ascii characters (see bug #310).

Compatibility with older versions of the speedata Publisher

The development of the speedata Publisher has one big “mantra”: existing setups must work with newer versions of the speedata Publisher without change. So you can always upgrade the latest development version without having to fear that you need to change your layout file.

This imposes limitations on development and usage of course.
New features have new XML tags or attributes.
For example the version 2.3.39 introduced a command to set options for PDF processing.
This only affects layout files that use this commands, old layout files simply ignore this command.
Similar with attributes, for example the balance attribute in tables was introduced in version 3.1.24.
In this case, older versions of the speedata Publisher will not balance the table, but will continue to work.

There are some major new technologies introduced since the speedata Publisher was first published in 2010. These usually work with a feature flag:

	
to activate the “HarfBuzz” font loader, you need to set the option fontloader to harfbuzz,

	
the new XML/XPath parser is only used when the option xpath is set to lxpath.

Both of these two features are drop-in replacements of the older versions.
There are a few special edge cases that require the old version of these two options:

	
The old font loader fontforge has the ability to use virtual fonts which is used to fake some font features.

	
The old xpath parser luxor can be used to calculate with dimensions (for example “2cm + 12mm”), this is not in accordance to the XPath specification, but used in some layouts.

Version 5 of the speedata Publisher sets the default to the newer versions of these two options.
This will have no effect on most of the layouts.
However there will be some layouts which rely on the old defaults and will break. Therefore you need to enable the older versions in the configuration file.

Exchanging layout files between different installations

Problems might show up when you rely on a feature to be present (for example the old font loader), but you use the layout file with an installation that has the new one activated.
You can set the requirements in the layout file (beginning with version 4.15.10) by giving a comma separated list to the Layout command:

<Layout
 xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en"
 require="lxpath,harfbuzz">

This makes sure that the installation has both activated the new XPath parser and the new font loader. Currently this is only a check, future versions might activate these features from the require attribute.

The available options are

	Key	Value
	lxpath	Assert that the new XPath parser is used.
	luxor	Assert that the old XPath parser is used.
	fontforge	Make sure that the old font loader is active.
	harfbuzz	Make sure that the new font loader is active.

Command reference

Attribute index

	alias
		
DefineFontalias

	align
		
Column

	
Td

	
Tr

	alignment
		
DefineTextformat

	allocate
		
Output

	
PlaceObject

	allocate-bottom
		
PlaceObject

	allocate-left
		
PlaceObject

	allocate-right
		
PlaceObject

	allocate-top
		
PlaceObject

	allowbreak
		
Paragraph

	alpha
		
DefineColor

	angle
		
Textblock

	append
		
Mark

	area
		
NextFrame

	
NextRow

	
Output

	
PlaceObject

	assignments
		
Trace

	attributes
		
SaveDataset

	author
		
PDFOptions

	b
		
DefineColor

	background
		
PlaceObject

	background-color
		
Box

	
Circle

	
Column

	
Frame

	
PlaceObject

	
Span

	
Td

	
Tr

	background-font-family
		
Td

	background-padding-bottom
		
Span

	background-padding-top
		
Span

	background-size
		
Td

	background-text
		
Td

	background-textcolor
		
Td

	background-transform
		
Td

	balance
		
Output

	
Table

	bidi
		
Paragraph

	bleed
		
Box

	
Image

	
Options

	bleedmarks
		
Options

	border-bottom
		
DefineTextformat

	
Td

	border-bottom-color
		
Td

	border-bottom-left-radius
		
Frame

	
PlaceObject

	border-bottom-right-radius
		
Frame

	
PlaceObject

	border-collapse
		
Table

	border-left
		
Td

	border-left-color
		
Td

	border-radius
		
Frame

	border-right
		
Td

	border-right-color
		
Td

	border-top
		
DefineTextformat

	
Td

	border-top-color
		
Td

	border-top-left-radius
		
Frame

	
PlaceObject

	border-top-right-radius
		
Frame

	
PlaceObject

	bordercolor
		
A

	bottom
		
Clip

	
Margin

	break-below
		
DefineTextformat

	
Tablerule

	
Tr

	c
		
DefineColor

	class
		
Box

	
Circle

	
Frame

	
Image

	
Paragraph

	
Span

	
Tablerule

	
Td

	
U

	clip
		
Frame

	
Image

	color
		
Barcode

	
Initial

	
Paragraph

	
Rule

	
Tablerule

	
Text

	
Textblock

	colorname
		
DefineColor

	colorprofile
		
PDFOptions

	colors
		
DefineColorprofile

	colspan
		
Td

	column
		
PlaceObject

	
PositioningFrame

	column-padding-top
		
DefineTextformat

	columndistance
		
Table

	
Textblock

	columnordering
		
Pagetype

	columns
		
Textblock

	condition
		
DefineColorprofile

	creator
		
PDFOptions

	criterion
		
SortSequence

	crop
		
Options

	cutmarks
		
Options

	dashed
		
Rule

	
U

	data
		
Tr

	defaultarea
		
Options

	defaultcolor
		
Pagetype

	description
		
AttachFile

	direction
		
Paragraph

	
Rule

	displaymode
		
PDFOptions

	dpi
		
PDFOptions

	dpiwarn
		
Image

	duplex
		
PDFOptions

	dx
		
Grid

	
SetGrid

	dy
		
Grid

	
SetGrid

	eclevel
		
Barcode

	element
		
Record

	elementname
		
SaveDataset

	embedded
		
A

	error
		
Message

	errorcode
		
Message

	eval
		
Table

	execute
		
SetVariable

	existing
		
DefineFontalias

	exit
		
Message

	factor
		
NoBreak

	fallback
		
Image

	features
		
LoadFontfile

	file
		
Image

	filename
		
AttachFile

	
DefineColorprofile

	
Fallback

	
LoadDataset

	
LoadFontfile

	
Stylesheet

	fill-last-line
		
DefineTextformat

	font-outline
		
Paragraph

	fontface
		
Bold

	
BoldItalic

	
Italic

	
Regular

	fontfamily
		
Barcode

	
Fontface

	
Initial

	
NoBreak

	
Ol

	
Paragraph

	
Span

	
Table

	
Text

	
Textblock

	
Ul

	fontsize
		
DefineFontfamily

	force
		
ClearPage

	format
		
PDFOptions

	frame
		
PlaceObject

	framecolor
		
Circle

	
Frame

	
PlaceObject

	
PositioningArea

	g
		
DefineColor

	graphic
		
AtPageCreation

	
AtPageShipout

	
Box

	
Td

	grid
		
Trace

	gridallocation
		
Trace

	gridlocation
		
Trace

	groupname
		
PlaceObject

	halign
		
PlaceObject

	height
		
Barcode

	
Box

	
Clip

	
Grid

	
Image

	
Pageformat

	
Pagetype

	
PositioningFrame

	
SetGrid

	
VSpace

	href
		
A

	hreference
		
PlaceObject

	html
		
Paragraph

	html-vertical-spacing
		
DefineTextformat

	hyperlinkbordercolor
		
PDFOptions

	hyperlinkborderwidth
		
PDFOptions

	hyphenate
		
DefineTextformat

	hyphenation
		
Trace

	hyphenchar
		
DefineTextformat

	id
		
Box

	
Circle

	
Frame

	
Image

	
Paragraph

	
Span

	
Tablerule

	
Td

	
U

	identifier
		
DefineColorprofile

	ignoreeol
		
Options

	imagenotfound
		
Options

	imageshape
		
Image

	imagetype
		
Image

	indentation
		
DefineTextformat

	info
		
DefineColorprofile

	interaction
		
Options

	k
		
DefineColor

	keepfontsize
		
Barcode

	keepposition
		
PlaceObject

	kerning
		
Trace

	keywords
		
PDFOptions

	label
		
DefineMatter

	label-left
		
Paragraph

	label-left-align
		
Paragraph

	label-left-distance
		
Paragraph

	label-left-width
		
Paragraph

	language
		
Hyphenation

	
Paragraph

	
Span

	
Textblock

	last-padding-bottom-max
		
Output

	leader
		
HSpace

	leader-width
		
HSpace

	leading
		
DefineFontfamily

	
Table

	left
		
Clip

	
Margin

	length
		
Rule

	letter-spacing
		
Span

	level
		
Bookmark

	limit
		
ForAll

	
ProcessNode

	link
		
A

	m
		
DefineColor

	mainlanguage
		
Options

	margin-bottom
		
DefineTextformat

	
Image

	margin-left
		
Image

	margin-right
		
Image

	margin-top
		
DefineTextformat

	
Image

	margin-top-box-start
		
DefineTextformat

	marginprotrusion
		
LoadFontfile

	markdown-extensions
		
Options

	matrix
		
Transformation

	matter
		
ClearPage

	maxheight
		
Image

	
PlaceObject

	maxwidth
		
Image

	
NoBreak

	method
		
Clip

	minheight
		
Image

	
Textblock

	
Tr

	
VSpace

	minwidth
		
Column

	
HSpace

	
Image

	mode
		
LoadFontfile

	
ProcessNode

	
Record

	model
		
DefineColor

	movecursoronplaceobject
		
Compatibility

	name
		
AttachFile

	
Attribute

	
Color

	
DefineColor

	
DefineColorprofile

	
DefineFontfamily

	
DefineGraphic

	
DefineMatter

	
DefineTextformat

	
Element

	
Function

	
Group

	
Groupcontents

	
InsertPages

	
Layout

	
LoadDataset

	
LoadFontfile

	
Pagetype

	
Param

	
PositioningArea

	
SaveDataset

	
SavePages

	numcopies
		
PDFOptions

	numerical
		
SortSequence

	nx
		
Grid

	
SetGrid

	ny
		
Grid

	
SetGrid

	objects
		
Trace

	oldstylefigures
		
LoadFontfile

	opacity
		
Image

	open
		
Bookmark

	openon
		
ClearPage

	order
		
SortSequence

	origin-x
		
PlaceObject

	
Transformation

	origin-y
		
PlaceObject

	
Transformation

	orphan
		
DefineTextformat

	overprint
		
DefineColor

	overshoot
		
Barcode

	padding
		
Image

	
Table

	
Td

	padding-bottom
		
Box

	
Image

	
Initial

	
Td

	padding-left
		
Box

	
Column

	
Image

	
Initial

	
Paragraph

	
Td

	padding-right
		
Box

	
Column

	
Image

	
Initial

	
Paragraph

	
Td

	padding-top
		
Box

	
DefineTextformat

	
Image

	
Initial

	
Td

	page
		
A

	
Image

	
PlaceObject

	
Tablefoot

	
Tablehead

	pagelayout
		
PDFOptions

	pagenumber
		
Makeindex

	pages
		
InsertPages

	pagetype
		
ClearPage

	part
		
Pagetype

	pdftarget
		
Mark

	picktraybypdfsize
		
PDFOptions

	prefix
		
DefineMatter

	printscaling
		
PDFOptions

	r
		
DefineColor

	radiusx
		
Circle

	radiusy
		
Circle

	randomseed
		
Options

	reduce
		
NoBreak

	registry
		
DefineColorprofile

	removeduplicates
		
SortSequence

	reportmissingglyphs
		
Options

	require
		
Layout

	resetafter
		
DefineMatter

	resetbefore
		
DefineMatter

	resetmarks
		
Options

	right
		
Clip

	
Margin

	role
		
Paragraph

	rotate
		
Image

	
PlaceObject

	
Td

	row
		
NextRow

	
Output

	
PlaceObject

	
PositioningFrame

	rows
		
DefineTextformat

	
NextRow

	rowspan
		
Td

	rulewidth
		
Circle

	
Frame

	
PlaceObject

	
Rule

	
Tablerule

	section
		
Makeindex

	select
		
AddSearchpath

	
AttachFile

	
Attribute

	
Barcode

	
Bookmark

	
Copy-of

	
ForAll

	
Loop

	
Makeindex

	
Mark

	
Message

	
ProcessNode

	
SaveDataset

	
SetVariable

	
SortSequence

	
Value

	sethead
		
Tr

	shiftup
		
Mark

	showbookmarks
		
PDFOptions

	showhyperlinks
		
PDFOptions

	showtext
		
Barcode

	skippagetype
		
ClearPage

	smallcaps
		
LoadFontfile

	sortkey
		
Makeindex

	space
		
LoadFontfile

	start
		
ForAll

	
Tablerule

	startpage
		
Options

	stretch
		
Image

	
Table

	subject
		
PDFOptions

	tab
		
DefineTextformat

	test
		
Case

	
Pagetype

	
Until

	
While

	text
		
NoBreak

	textformat
		
Paragraph

	
Table

	
Text

	
Textblock

	
Trace

	title
		
PDFOptions

	top
		
Clip

	
Margin

	top-distance
		
Tr

	trace
		
SetVariable

	type
		
AttachFile

	
Barcode

	
SetVariable

	valign
		
Column

	
PlaceObject

	
Td

	
Tr

	valign-last
		
Output

	value
		
DefineColor

	variable
		
Loop

	
SetVariable

	verbose
		
Trace

	version
		
Layout

	vexcess
		
Table

	visiblebox
		
Image

	vreference
		
PlaceObject

	widow
		
DefineTextformat

	width
		
Barcode

	
Box

	
Clip

	
Column

	
Grid

	
HSpace

	
Image

	
Pageformat

	
Pagetype

	
PositioningFrame

	
SetGrid

	
Table

	
Textblock

	x
		
Position

	xml:base
		
Include

	y
		
DefineColor

	
Position

A

Insert hyperlink to a URL.

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Overlay, Paragraph, PlaceObject, Span, U, URL, Until, While

Attributes

	bordercolor (text, optional, since version 4.15.7)
	Set the color of the border (Adobe Acrobat ony).

	embedded (text, optional, since version 4.15.11)
	Link to an attached file. To open a page other than the first page, set the page attribute, to open a named destination, set the link attribute.

	href (text, optional)
	The target of the hyperlink (URI). Example: https://www.speedata.de

	link (text, optional, since version 3.3.8)
	The target of the document link (a Mark). Example: article123. When linking to embedded files, the link attribute may contain the named destination of the target.

	page (number, optional, since version 4.3.5)
	Link to a (logical) page number. When linking to embedded files, the page attribute may contain the page number of the target.

Example

Create a simple hyperlink to a URL.

<PlaceObject>
 <Textblock>
 <Paragraph><Value>See the </Value>

 <Value>homepage</Value>

 <Value> for more information.</Value>
 </Paragraph>
 </Textblock>
</PlaceObject>

Create a hyperlink to an attached document. Only supported on a few PDF viewers.

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <AttachFile type="application/pdf"
 filename="document.pdf"
 description="An important document" />
 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>

 <Value>See the page 5 of the document.</Value>

 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

See also

The section Text formatting.

Action

Associates an action with a text. Once the text is placed on the page, the associated action will be executed. The action can be compared to an invisible character. When the publisher outputs the character, the corresponding instructions will be run.

Child elements

Mark

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, Text, Textblock, U, URL, Until, While

Attributes

(none)

Example

<Pageformat width="210mm" height="4cm"/>

<Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>
 Row
 Row
 Row
 Row
 </Value>
 </Paragraph>
 </Textblock>
 <Textblock>
 <Action>
 <Mark select="'textstart'"/>
 </Action>
 <Paragraph>
 <Value>
 Row
 Row
 Row
 </Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <ClearPage/>
 <Message select="sd:pagenumber('textstart')"></Message>
</Record>

See also

The command <Mark> and the section Automatically generated directories

AddSearchpath

since version 3.1.1

Add a directory on the hard-drive to be added to the publisher’s search path.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	select (XPath expression)
	The path to be added. System dependent.

Example

<Switch>
 <Case test="sd:variable-exists('searchpath')">
 <AddSearchpath select="$searchpath" />
 </Case>
</Switch>

See also

AtPageCreation

The contents of the element AtPageCreation is executed the first time the page is accessed. This is used in Pagetype.

Child elements

AddSearchpath, AttachFile, Bookmark, ClearPage, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, ForAll, Group, Hyphenation, Include, InsertPages, Layout, LoadDataset, Loop, Message, NextFrame, NextRow, Options, Output, PDFOptions, Pageformat, Pagetype, PlaceObject, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Switch, Until, Value, While

Parent elements

Pagetype

Attributes

	graphic (text, optional, since version 4.3.14)
	The name of a metapost graphic.

Example

<AtPageCreation>
 <PlaceObject column="1" row="1">
 <Textblock>
 <Paragraph>
 <Value select="$pageheader"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</AtPageCreation>

See also

Commands <AtPageShipout> and <Pagetype> as well as the section Page types.

AtPageShipout

The enclosed instructions will be executed when the page is placed into the PDF file. Used in Pagetype.

Child elements

AddSearchpath, AttachFile, Bookmark, ClearPage, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, ForAll, Group, Hyphenation, Include, InsertPages, Layout, LoadDataset, Loop, Message, NextFrame, NextRow, Options, Output, PDFOptions, Pageformat, Pagetype, PlaceObject, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Switch, Until, Value, While

Parent elements

Pagetype

Attributes

	graphic (text, optional, since version 4.3.14)
	The name of a metapost graphic.

Example

<AtPageShipout>
 <PlaceObject column="1" row="20">
 <Textblock>
 <Paragraph>
 <Value select="sd:current-page()"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</AtPageShipout>

See also

Commands <AtPageCreation> and <Pagetype> as well as the section Page types.

AttachFile

since version 3.1.1

Attach a file to the PDF. Can be used to attach a ZUGFeRD electronic invoice.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	description (text, optional)
	Textual description of the attached file (for the PDF viewer).

	filename (text, optional)
	The name of the local file to be attached to the PDF.

	name (text, optional, since version 3.7.3)
	Set the name of the attached file in the PDF document. Defaults to ZUGFeRD-invoice.xml if the attached file type is ZUGFeRD invoice.

	select (XPath expression, optional, since version 3.7.2)
	The contents of the file. Alternative to reading a file from the hard-drive.

	type (text)
	The type of the included file. Must be a mime type or ZUGFeRD invoice.

Example

<AttachFile filename="invoice.xml" description="A ZUGFeRD invoice." type="ZUGFeRD invoice"/>

<AttachFile select="CrossIndustryDocument" description="A ZUGFeRD invoice." type="ZUGFeRD invoice"/>

Info

Attaching a ZUGFeRD electronic invoice is available in the Pro plan.

See also

The chapter Attach files to the PDF.

Attribute

Create an attribute for the Element data structure that can be saved to the hard drive with SaveDataset.

Child elements

(none)

Parent elements

Case, Element, ForAll, Loop, Otherwise, SetVariable, Until, While

Attributes

	name (text)
	Name of the attribute that is created.

	select (XPath expression)
	The contents of the attribute

Example

<Element name="Entry">
 <Attribute name="chapter" select="@name"/>
 <Attribute name="page" select="sd:current-page()"/>
</Element>

creates the following structure:

<Entry chapter="(contents of @name)" page="(the current page number)" />

See also

Commands <Element>, <LoadDataset> and <SaveDataset> as well as the section Creation of XML structures.

B

Switch to font weight »bold«

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

(none)

Example

<Textblock>
 <Paragraph>
 <Value>Bold text</Value>
 </Paragraph>
</Textblock>

See also

The section text formatting as well as the commands <I> and <U>.

Barcode

Print a 1d or 2d barcode. To be used in PlaceObject.

Child elements

(none)

Parent elements

A, B, Case, Clip, Color, Fontface, ForAll, Frame, I, Li, Loop, NoBreak, Otherwise, Overlay, Paragraph, PlaceObject, Position, Span, Td, Transformation, U, URL, Until, While

Attributes

	color (optional, since version 4.5.11)
	Color of the barcode. Must be defined with DefineColor before use. Currently only used for QR codes.

	eclevel (optional, since version 2.7.10)
	Set the error correction level for QR-codes. If not provided, the system uses the maximum level for minimum size. The higher the level, the more error correction is in the QR-code.

	L
	Set the lowest level (1) with approx. 7% recovery.

	M
	Set the second lowest level (2) with approx. 15% recovery.

	Q
	Set the second highest level (3) with approx. 25% recovery.

	H
	Set the highest level (4) with approx. 35% recovery.

	fontfamily (text, optional)
	Name of the font of the text that can be placed beneath the barcode. Not used in all codes.

	height (number or length, optional)
	Height of the barcode.

	keepfontsize (yes or no, optional, since version 4.1.2)
	Try to keep the size of the requested font. Works with EAN13 only.

	overshoot (number, optional)
	The factor denoting the extra length of the outer and middle bar. Only useful with EAN13.

	select (XPath expression)
	The data to be encoded in the barcode.

	showtext (optional)
	Should the text be written under the barcode?

	yes
	Write text beneath the barcode.

	no
	Don’t display text.

	type ()
	Type of the barcode. One of EAN13, Code128 or QRCode.

	QRCode
	Create an »optimal« QR code in terms of error correction and size.

	Code128
	Generate a code 128 barcode for numbers and text.

	EAN13
	Create an EAN13 barcode for 13 digits.

	width (number or length, optional)
	Width of the barcode

Example

<PlaceObject>
 <Barcode select="'speedata Publisher'" type="Code128" showtext="yes"/>
</PlaceObject>

gives

<PlaceObject>
 <Barcode select="4242002518169" type="EAN13"/>
</PlaceObject>

becomes

And finally the QR code

<PlaceObject>
 <Barcode select="'http://www.speedata.de'" type="QRCode" height="5"/>
</PlaceObject>

looks like

See also

The section about <Barcodes> in the basics chapter.

Bold

Name of the font face that should be used when switching to »bold«.

Child elements

(none)

Parent elements

DefineFontfamily

Attributes

	fontface (text)
	Name of the font for bold.

Example

<LoadFontfile name="Times" filename="timesregular.otf"/>
<LoadFontfile name="Times bold" filename="timesbold.otf"/>
<LoadFontfile name="Times italic" filename="timesitalic.otf"/>
<LoadFontfile name="Times bold italic" filename="timesbolditalic.otf"/>

<DefineFontfamily name="text" fontsize="12" leading="14">
 <Regular fontface="Times"/>
 <Bold fontface="Times bold"/>
 <Italic fontface="Times italic"/>
 <BoldItalic fontface="Times bold italic" />
</DefineFontfamily>

See also

Command <DefineFontfamily>, chapter Using fonts.

BoldItalic

Name of the font face that should be used when switching to »bold italic«.

Child elements

(none)

Parent elements

DefineFontfamily

Attributes

	fontface (text)
	Name of the font for bold italic.

Example

<LoadFontfile name="Times" filename="timesregular.otf"/>
<LoadFontfile name="Times bold" filename="timesbold.otf"/>
<LoadFontfile name="Times italic" filename="timesitalic.otf"/>
<LoadFontfile name="Times bold italic" filename="timesbolditalic.otf"/>

<DefineFontfamily name="text" fontsize="12" leading="14">
 <Regular fontface="Times"/>
 <Bold fontface="Times bold"/>
 <Italic fontface="Times italic"/>
 <BoldItalic fontface="Times bold italic" />
</DefineFontfamily>

See also

Command <DefineFontfamily>, chapter Using fonts.

Bookmark

Create a bookmark for the PDF viewer (e.g. Adobe Reader). When the user clicks on a bookmark, the PDF viewer jumps to that place in the document.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Loop, Otherwise, PlaceObject, Record, SavePages, Td, Text, Textblock, Until, While

Attributes

	level (number)
	1 is the top level, 2 is the next level, etc.

	open (optional)
	If yes, the child elements are shown. If no, the child elements are hidden.

	yes
	Show children.

	no
	Hide children.

	select (XPath expression)
	Title of the bookmark

Example

<Bookmark level="1" select="$title" open="no" />

Create a bookmark on level 1 (top level) with the title stored in the variable title.

See also

Chapter about bookmarks.

Box

Create a rectangular colored area. The area must fit the grid cells.

Child elements

(none)

Parent elements

Case, Clip, ForAll, Frame, Loop, Otherwise, Overlay, PlaceObject, Position, Td, Transformation, Until, While

Attributes

	background-color (text, optional, CSS property: background-color)
	Color of the box. If the color name is a dash (-), a transparent background is used.

	bleed (optional)
	Lets the box increase its size by the amount of trim given in the options. Useful for thumb indexes. The contents of the attribute is either »left«, »right«, »top« or »bottom« or any combination such as »top,right«.

	top
	Increase the size to the top.

	left
	Increase the size to the left.

	bottom
	Increase the size to the bottom.

	right
	Increase the size to the right.

	top,left
	Increase the size to the top and left.

	top,right
	Increase the size to the top and right.

	bottom,left
	Increase the size to the bottom and left.

	bottom,right
	Increase the size to the bottom and right.

	class (text, optional)
	CSS class for this box.

	graphic (text, optional, since version 4.3.10)
	The name of the metapost graphic to use instead of the box.

	height (number or length)
	Height of the box in grid cells.

	id (text, optional)
	CSS id for this box.

	padding-bottom (length, optional, CSS property: padding-bottom, since version 2.5.10)
	Set the inner distance (width between contents and the border) to the bottom edge.

	padding-left (length, optional, CSS property: padding-left, since version 2.5.10)
	Set the inner distance (width between contents and the border) to the left edge.

	padding-right (length, optional, CSS property: padding-right, since version 2.5.10)
	Set the inner distance (width between contents and the border) to the right edge.

	padding-top (length, optional, CSS property: padding-top, since version 2.5.10)
	Set the inner distance (width between contents and the border) to the top edge.

	width (number or length)
	Width of the box in grid cells or in absolute values.

Example

<DefineColor name="mygreen" model="cmyk" c="22" m="0" y="55" k="0"/>
<PlaceObject>
 <Box width="10" height="5" background-color="mygreen"/>
</PlaceObject>

looks like

See also

The section about <Box> in the basics chapter.

Br

Insert a newline

Child elements

(none)

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

(none)

Example

<Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>Hello</Value>
<Value>world</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

See also

The section text formatting.

Case

Part of a Switch construct. All cases up to the first case which evaluates to »true« will be executed. If no cases match and there is a Otherwise, this will be executed instead.

Child elements

A, Action, AddSearchpath, AttachFile, Attribute, B, Barcode, Bookmark, Box, Br, ClearPage, Clip, Color, Column, Columns, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, Element, Fontface, ForAll, Frame, Group, HSpace, Hyphenation, I, Image, Include, Initial, InsertPages, Layout, Li, LoadDataset, LoadFontfile, Loop, Message, NextFrame, NextRow, NoBreak, Options, Output, Overlay, Pageformat, Pagetype, Paragraph, PlaceObject, PositioningArea, PositioningFrame, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Span, Sub, Sup, Switch, Table, TableNewPage, Tablehead, Tablerule, Td, Tr, Trace, Transformation, U, Until, VSpace, Value, While

Parent elements

Switch

Attributes

	test (XPath expression)
	The test that gets evaluated.

Example

See the example at Switch.

See also

The section programming.

Circle

since version 2.3.42

Create a circle or ellipse.

Child elements

(none)

Parent elements

Clip, Frame, Overlay, PlaceObject, Position, Transformation

Attributes

	background-color (text, optional, CSS property: background-color)
	Color of the circle.

	class (text, optional)
	CSS class for the circle.

	framecolor (text, optional, CSS property: color)
	Color of the circle line.

	id (text, optional)
	CSS id for this circle.

	radiusx (number or length)
	Radius of the circle in grid cells (horizontal) or as an absolute length. Use with radiusy to create an ellipse.

	radiusy (number or length, optional)
	Radius of the ellipse in grid cells (vertical) or as an absolute length.

	rulewidth (length, optional)
	The thickness of the border that is drawn around the object.

Example

<DefineColor name="mygreen" model="cmyk" c="22" m="0" y="55" k="0"/>
<PlaceObject row="5" column="5" >
 <Circle radiusx="10mm" background-color="blue" framecolor="mygreen" rulewidth="1mm"/>
</PlaceObject>

looks like

See also

The section about <Circle> in the basics chapter.

ClearPage

since version 4.5.14

Finishes the current page.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Loop, Otherwise, Record, SavePages, SetVariable, Until, While

Attributes

	force (optional)
	Force the creation of a new page when multiple consecutive ClearPage commands occur.

	matter (optional)
	Set the matter for the new page.

	openon (optional)
	The next current page will be a left or a right page. E.g. when on page 1 and openon="right" then page 2 is empty and the next current page is 3.

	left
	The next objects will be placed on a left page.

	right
	The next objects will be placed on a right page.

	pagetype (text, optional)
	The name of the next page type that should be used. If an InsertPage follows the NextPage, the pagetype is used for the first inserted page.

	skippagetype (text, optional)
	The pagetype of the blank page if inserted (see the attribute openon).

Remarks

This used to be the command <NewPage>. NewPage is kept internally for backwards compatibility, but had incorrect behaviour.

Example

<Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph><Value>This is page 1</Value></Paragraph>
 </Textblock>
 </PlaceObject>
 <ClearPage openon="right"/>
 <PlaceObject>
 <Textblock>
 <Paragraph><Value>And this is page 3</Value></Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

See also

ClearPage

Clip

since version 4.11.3

Clip an image or other output

Child elements

Barcode, Box, Circle, Frame, Image, Rule, Table, Textblock, Transformation

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, PlaceObject, Span, U, URL, Until, While

Attributes

	bottom (length, optional)
	The amount of clip from the bottom border.

	height (length, optional)
	The clipped height of the object. Should be used with one of top or bottom.

	left (length, optional)
	The amount of clip from the left border.

	method (optional)
	Set the resize method of the resulting object.

	clip
	Clip and shrink the object.

	frame
	Just hide the outer frame of the object, do not change the size.

	right (length, optional)
	The amount of clip from the right border.

	top (length, optional)
	The amount of clip from the top border.

	width (length, optional)
	The clipped width of the object. Should be used with one of left or right.

Example

<PlaceObject frame="solid">
 <Clip left="1cm" right="1cm" top="1cm" bottom="2cm" method="clip">
 <Image width="5cm" file="_sampleb.pdf" />
 </Clip>
</PlaceObject>

See also

Clipping

Color

Switch to another text color

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

	name (text)
	The name of the color. Must be pre-defined with DefineColor.

Example

<?xml version="1.0" encoding="UTF-8"?>
<Layout
 xmlns="urn:speedata.de:2009/publisher/en">

 <DefineColor name="red" value="#f00"/>
 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>Hello </Value><Color name="red"><Value>bar</Value></Color>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

See also

The section text formatting, the section about colors and the command <DefineColor>.

Column

Set the properties of a column in the table.

Child elements

(none)

Parent elements

Case, Columns, ForAll, Function, Loop, Otherwise, SetVariable, Until, While

Attributes

	align (optional)
	The horizontal alignment of the table cells in this column. Can be overridden in a cell (Td).

	left
	The table cells are left aligned.

	center
	The table cells are horizontally centered.

	right
	The table cells are right aligned.

	background-color (text, optional)
	All cells in this column have this background color.

	minwidth (length, optional, since version 4.13.9)
	Minimum width of the column. Argument can be a number (in grid cells) or a length (e.g. 2cm).

	padding-left (length, optional, since version 3.1.8)
	Set the left padding for the column

	padding-right (length, optional, since version 3.1.8)
	Set the right padding for the column

	valign (optional)
	The vertical alignment of the cells in this column. Can be overridden in a cell (Td).

	top
	The table cells are top aligned.

	middle
	The table cells are vertically centered.

	bottom
	The table cells are aligned at the bottom.

	width (Number, length or *-numbers, optional)
	Width of the column. Argument can be a number (in grid cells) a length (e.g. 2cm), a *-number (e.g. 4*) or the keyword min or max.

Example

See the example at Columns.

See also

The section about Columns in chapter Tables.

Columns

Set the widths and other properties of the columns in a table.

Child elements

Column, Copy-of, ForAll, Loop, Switch

Parent elements

Case, ForAll, Function, Loop, Otherwise, SetVariable, Table, Until, While

Attributes

(none)

Remarks

The * widths in the command »Column« allow dynamic cell widths. For that the total width of the table must be set and the attribute (on Table) stretch must be set to max.
 The widths of the columns are calculated as follows: first the absolute widths are taken into account. After that, the * columns are distributed across the remaining space. The
 numbers before the * denote the fraction of the space. In the example below the third column gets 1/6 of the remaining width, the fourth column get 5/6.

Example

<Table>
 <Columns>
 <Column width="14mm" />
 <Column width="2" />
 <Column width="1*" align="right" valign="top" />
 <Column width="5*" />
 <Column width="5mm" background-color="gray" />
 <Tr>

 </Tr>
 </Columns>
</Table>

See also

The section about Columns in chapter Tables.

Compatibility

Set compatibility for older layouts

Child elements

(none)

Parent elements

Layout

Attributes

	movecursoronplaceobject (optional, since version 2.7.4)
	Switch the behavior where objects at the right page margin used in PlaceObject puts the cursor in #columns + 1.

	yes
	New behavior (default): set cursor in column 1 when an object goes to the right margin.

	no
	Old behavior: set the cursor to the column + 1 past the right edge of the placed object.

Example

<Compatibility
 movecursoronplaceobject="no"
/>

Contents

Marks the contents of a Group, a virtual area.

Child elements

AddSearchpath, AttachFile, Bookmark, ClearPage, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, ForAll, Group, Hyphenation, Include, InsertPages, Layout, LoadDataset, Loop, Message, NextFrame, NextRow, Options, Output, PDFOptions, Pageformat, Pagetype, PlaceObject, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Switch, Until, Value, While

Parent elements

Group

Attributes

(none)

Example

See the example at Group.

See also

The command <Group> and the section about Groups (virtual objects).

Copy-of

Replace this element by the copy of the selection as an element structure. You can use it to construct more complex data structures.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Columns, Contents, Element, ForAll, Loop, Otherwise, Record, SaveDataset, SavePages, SetVariable, Table, Tablefoot, Tablehead, Td, Text, Textblock, Tr, Until, While

Attributes

	select (XPath expression)
	The selection (most likely a variable) that is to be copied.

Example

<SetVariable variable="myparagraph">
 <Paragraph>
 <Value select="@name"/><Value>, Symbol=</Value><Value select="@symbol"/>
 </Paragraph>
</SetVariable>
<PlaceObject>
 <Textblock>
 <Copy-of select="$myparagraph"/>
 </Textblock>
</PlaceObject>

is the same as

<PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="@name"/><Value>, Symbol=</Value><Value select="@symbol"/>
 </Paragraph>
 </Textblock>
</PlaceObject>

with the exception that the values of @name and @symbol can be evaluated before the text gets output.

See also

The section about <Copy-of>.

DefineColor

Colors defined with DefineColors can be referenced later by their name.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	alpha (number, optional, since version 4.3.15)
	Set the opacity of the color. (0-100/255, where 0 is invisible)

	b (0 to 100 or 0 to 255, optional)
	Blue part with rgb (0-100) or RGB (0-255).

	c (0 up to 100, optional)
	Cyan part with cmyk (0-100).

	colorname (text, optional)
	The name of the spot color if model is »spotcolor«. The name must match the required color name, such as »PANTONE 116 C«.

	g (0 to 100 or 0 to 255, optional)
	Green part with rgb (0-100) or RGB (0-255) / gray part when using the model gray (0-100).

	k (0 up to 100, optional)
	Black part with cmyk (0-100).

	m (0 up to 100, optional)
	Magenta part with cmyk (0-100)

	model (optional)
	Color model to be used for the color. Currently “rgb”, “cmyk”, “gray” and “spotcolor” are supported.

	cmyk
	CMYK (cyan, magenta, yellow, key/black), values between 0 and 100 (100 = full intensity)

	rgb
	rgb (red, green, blue), values between 0 and 100, 100 means full intensity

	RGB
	rgb (red, green, blue), values between 0 and 255, 255 means full intensity

	gray
	Gray (0=black, 100=white)

	spotcolor
	Use a PANTONE or HKS color.

	name (text)
	The name of the color to be defined.

	overprint (optional)
	Enable overprint for this color.

	yes
	Enable overprint for this color.

	no
	Disable overprint for this color (default).

	r (0 to 100 or 0 to 255, optional)
	Red part with rgb (0-100) or RGB (0-255).

	value (text, optional)
	Hex value of the color, such as #FA5 or #FFAA55 or rgb(255,170,85) or rgba(255,170,85,1).

	y (0 up to 100, optional)
	Yellow part with cmyk (0-100).

Example

<DefineColor name="black" model="cmyk" c="0" m="0" y="0" k="100"/>
<DefineColor name="white" model="rgb" r="100" g="100" b="100"/>

Info

The CSS level 3 colors are predefined in RGB-space. See http://www.w3.org/TR/css3-color/ for the definitions. That means you can use common colors such as red or goldenrod without using DefineColor.

The predefined colors are: aliceblue, black, orange, rebeccapurple, antiquewhite, aqua, aquamarine, azure, beige, bisque, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, darkblue, darkcyan, darkgoldenrod, darkgray, darkgreen, darkgrey, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, green, greenyellow, grey, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgreen, lightgrey, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow and yellowgreen

See also

The section about colors.

DefineColorprofile

since version 3.5.7

Associate an external color profile with a name. To be used in PDFOptions.

Child elements

(none)

Parent elements

Layout

Attributes

	colors (number)
	Number of the colors in this color profile

	condition (text, optional)
	Description of the output condition.

	filename (text)
	Filename of the color profile.

	identifier (text)
	The official identifier for the registry.

	info (text)
	Short text about the color profile.

	name (text)
	The internal name of the color profile. To be used in PDFOptions.

	registry (text, optional)
	The name of the registry. Defaults to http://www.color.org/.

Example

<DefineColorprofile
 name="fogra51"
 identifier="FOGRA51"
 condition="Offset printing, according to ISO 12647-2:2013, 115 g/m2, tone value increase curves A (CMYK)"
 filename="PSOcoated_v3.icc"
 info="Coated FOGRA 51 (ISO 12647-2:2013)"
 registry="http://www.color.org"
 colors="4"
/>

<PDFOptions format="PDF/X-3" colorprofile="fogra51"/>

Info

The profile “FOGRA39” - Coated FOGRA39 (ISO 12647-2:2004) is included in the distribution.

See also

The section about colors.

DefineFontalias

since version 2.7.12

Defines a font alias. When defining a font family, you can use the an alias for the fontname. Aliases are looked up recursively.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	alias (text)
	New (equivalent) name of the font

	existing (text)
	The name of the existing font family.

Example

<DefineFontalias existing="DejaVuSerif" alias="serif"/>
<DefineFontalias existing="DejaVuSerif-Bold" alias="serif-bold"/>
<DefineFontalias existing="DejaVuSerif-Italic" alias="serif-italic"/>
<DefineFontalias existing="DejaVuSerif-BoldItalic" alias="serif-bolditalic"/>

Now you can define a font family with

<DefineFontfamily name="title" fontsize="15" leading="17">
 <Regular fontface="serif"/>
 <Bold fontface="serif-bold"/>
 <BoldItalic fontface="serif-bolditalic"/>
 <Italic fontface="serif-italic"/>
</DefineFontfamily>

See also

The section about Using fonts and the command <DefineFontfamily> as well as <LoadFontfile>.

DefineFontfamily

Defines a font family consisting of the shapes “regular”, “bold”, “bold italic” and “italic”. To be used in Paragraph, Textblock, Fontface and Table with the attribute fontfamily.

Child elements

Bold, BoldItalic, Italic, Regular

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	fontsize (number)
	Font size in pt (PostScript points). Number without unit.

	leading (number)
	Distance between two baselines in pt (PostScript points). Without unit.

	name (text)
	The symbolic name that is used as a reference to access this font family.

Remarks

The default fontface is named »text« and it can be redefined by defining a new font family called »text«.

The variants bold, italic and bold italic are optional.

Example

<DefineFontfamily name="Title" fontsize="12" leading="14">
 <Regular fontface="Helvetica Regular"/>
 <Bold fontface="Helvetica Bold"/>
 <Italic fontface="Helvetica Italic"/>
 <BoldItalic fontface="Helvetica Bold Italic"/>
</DefineFontfamily>

This font family can now be accessed like this:

<Textblock fontfamily="Title">
 <Paragraph>
 <Value>...<Value>
 </Paragraph>
</Textblock>

See also

The section about Using fonts and the command <DefineFontalias> as well as <LoadFontfile>.

DefineGraphic

since version 4.3.10

Define a metapost graphic to be used in Box. EXPERIMENTAL!

Child elements

(none)

Parent elements

Layout

Attributes

	name (text)
	The name of the graphic.

Example

<DefineGraphic name="dottedbox">
 beginfig(1);
 pickup pencircle scaled 0.4mm;
 draw (0,0) -- (box_width,0) -- (box_width, box_height) -- (0, box_height) -- cycle dashed withdots ;
 endfig;
</DefineGraphic>

<Record element="data">
 <PlaceObject row="3" column="1">
 <Box height="5" width="1" graphic="dottedbox" />
 </PlaceObject>
</Record>

See also

The section Create and use images with MetaPost in the avanced topics section.

DefineMatter

since version 4.3.5

Define a new section of the document.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	label (optional)
	Set label for the user-visible page number.

	decimal
	Set the page number to decimal arabic numerals.

	lowercase-romannumeral
	Set the page numbering to lowercase romannumeral

	uppercase-romannumeral
	Set the page numbering to uppercase romannumeral

	lowercase-letter
	Set the page numbering to lowercase letter (a-z)

	uppercase-letter
	Set the page numbering to uppercase letter (A-Z)

	name (text)
	The name of the section to be defined.

	prefix (text, optional)
	Set the prefix of the displayed page number.

	resetafter (yes or no, optional)
	Reset page numbering to 1 after this matter.

	resetbefore (yes or no, optional)
	Set the page number to 1 at the section start.

Remarks

There are two predefined matters: mainmatter (default) and frontmatter (which switches to lowercase romannumeral).

Example

Set the page numbering to “A-1, A-2, …​”

<DefineMatter name="mainmatter" label="decimal" prefix="A-" />

See also

The command Pageformat.

DefineTextformat

Define text formatting instructions. A textformat is used to align and indent text and create margins and rules before and after the text.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	alignment (optional)
	Determines the formatting of the text. It defaults to justified.

	justified
	Textblock has a rectangular shape.

	leftaligned
	The text is ragged at the right margin.

	rightaligned
	The text is ragged right at the left margin.

	centered
	The text is ragged at the left and the right margin.

	start
	The text is ragged at the right margin for left-to-right texts and at the left margin for right-to-left texts.

	end
	The text is ragged at the left margin for left-to-right texts and at the right margin for right-to-left texts.

	border-bottom (length, optional)
	The thickness of the rule below the text.

	border-top (length, optional)
	The thickness of the rule above the text.

	break-below (optional)
	(Dis-)Allow break below the text. This only works if the following text is placed within the same PlaceObject or Output container.

	yes
	Allow a break below this text (default).

	no
	Prevent a page break below this text.

	column-padding-top (optional, since version 3.2.1)
	The height of the padding that is inserted in a column (at the top) with Output/Text.

	fill-last-line (0 up to 100, optional, since version 3.3.11)
	Ensure the length of the last line in a paragraph. Values from 0 (no change) to 100 (last line is full). Handle with care. Default is 0.

	html-vertical-spacing (optional, since version 4.1.6)
	Set the vertical spacing for HTML contents. Defaults to “off”.

	all
	Allow each vertical spacing.

	inner
	Discard first and last vertical spacing.

	off
	Ignore all vertical spacing.

	hyphenate (optional)
	Enable or disable hyphenation (default: on).

	yes
	Enable hyphenation (default).

	no
	Disable hyphenation.

	hyphenchar (text, optional)
	The character used for hyphenation (default: -)

	indentation (length, optional)
	The amount of indentation.

	margin-bottom (length, optional)
	Distance between the bottom rule and the text of the next paragraph.

	margin-top (length, optional)
	Distance between the top rule and the text of the previous paragraph.

	margin-top-box-start (optional, since version 3.9.7)
	The top margin at the beginning of a page or column with Output. Defaults to the value of margin-top.

	name (text)
	Name of the textformat that is used later in the layout.

	orphan (yesnonumber, optional)
	If yes, allow orphans (first line of paragraph is on the previous page). If you provide a number, it is the number of lines that must be kept together. Default: no.

	padding-top (length, optional)
	Distance between the top of the text and the top rule.

	rows (number, optional)
	The number of rows with indentation given in the attribute indentation. If the number is negative, this determines the number of rows that are not indented.

	tab (optional, since version 3.1.5)
	What to do on the tab (\& #09;) character.

	space
	Use tab as space

	hspace
	Use tab as a stretching space

	widow (yesnonumber, optional)
	If yes, allow widows (last line of paragraph is on the next page). If you provide a number, it is the number of lines that must be kept together. Default: no.

Remarks

The textformats text, centered, left and right are predefined. They stand for justified, centered, left aligned and right aligned text.

Indentation with negative values for rows do not work with HTML text.

Example

<DefineTextformat name="text with indentation" alignment="justified" indentation="1cm"/>

<Record element="...">
 <PlaceObject>
 <Textblock textformat="text with indentation">
 <Paragraph>
 <Value>Text ...</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

See also

The section about Text formats.

Element

Create a data structure that can be used to save on the hard-drive between consecutive runs (with SaveDataset).

Child elements

Attribute, Copy-of, Element, ForAll, Loop, Makeindex, SortSequence, Switch, Value

Parent elements

Case, Element, ForAll, Loop, Message, Otherwise, SaveDataset, SetVariable, Until, While

Attributes

	name (text)
	Name of the element that gets created.

Example

<SetVariable variable="articles">
 <Element name="articlelist">
 <Attribute name="name" select=" @name "/>
 <Attribute name="page" select="sd:current-page()"/>
 </Element>
</SetVariable>

See also

Commands <Attribute>, <LoadDataset> and SaveDataset as well as the section Creation of XML structures.

Fallback

since version 3.7.7

Define a fallback for LoadFontfile

Child elements

(none)

Parent elements

LoadFontfile

Attributes

	filename (text)
	The filename of the font to be used as a fallback.

Example

<LoadFontfile name="zh" filename="Microsoft JhengHei.ttf" >
 <Fallback filename="texgyreheros-regular.otf" />
 <Fallback filename="ZapfDingbats.ttf" />
</LoadFontfile>

See also

Command <LoadFontfile>, chapter Using fonts.

Fontface

Switch to another font family.

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

	fontfamily (text)
	The name of the font family to switch to.

Example

<Record element="...">
 <PlaceObject>
 <Textblock>
 <Paragraph fontfamily="large">
 <Value>large</Value>
 <Fontface fontfamily="text">
 <Value>regular</Value><Value>bold</Value>
 </Fontface>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

See also

The section text formatting.

ForAll

Executes the given commands for all elements in the data XML file that match the contents of the attribute select.

Child elements

A, Action, AddSearchpath, AttachFile, Attribute, B, Barcode, Bookmark, Box, Br, ClearPage, Clip, Color, Column, Columns, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, Element, Fontface, ForAll, Frame, Group, HSpace, Hyphenation, I, Image, Include, Initial, InsertPages, Layout, Li, LoadDataset, LoadFontfile, Loop, Message, NextFrame, NextRow, NoBreak, Options, Output, Overlay, Pageformat, Pagetype, Paragraph, PlaceObject, PositioningArea, PositioningFrame, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Span, Sub, Sup, Switch, Table, TableNewPage, Tablehead, Tablerule, Td, Tr, Trace, Transformation, U, Until, VSpace, Value, While

Parent elements

A, AtPageCreation, AtPageShipout, B, Case, Color, Columns, Contents, Element, Fontface, ForAll, Function, I, Li, Loop, NoBreak, Ol, Otherwise, Pagetype, Paragraph, Record, SaveDataset, SavePages, SetVariable, Span, Table, Tablefoot, Tablehead, Td, Text, Textblock, Tr, U, URL, Ul, Until, While

Attributes

	limit (number, optional)
	Limits the number of children to the given number.

	select (XPath expression)
	Selects the child elements from the data XML

	start (number, optional, since version 2.3.67)
	The first entry to process. Default is 1.

Example

<Record element="data">
 <PlaceObject>
 <Table>
 <ForAll select="entry">
 <Tr><Td><Paragraph><Value select="string(.)"/></Paragraph></Td></Tr>
 </ForAll>
 </Table>
 </PlaceObject>
</Record>

Creates a table row for all elements entry in the data element data. The data XML should look similar to this:

<data>
 <entry>a</entry>
 <entry>b</entry>
 <entry>c</entry>
</data>

See also

The section about Structure of the data file and the layout rules.

Frame

Manipulate an object’s appearance by drawing a frame. Can be used as a clipping path.

Child elements

Barcode, Box, Circle, Frame, Image, Rule, Table, Textblock, Transformation

Parent elements

A, B, Case, Clip, Color, Fontface, ForAll, Frame, I, Li, Loop, NoBreak, Otherwise, Overlay, Paragraph, PlaceObject, Position, Span, Td, Transformation, U, URL, Until, While

Attributes

	background-color (text, optional)
	Color of the background if ›background‹ is set to ›full‹.

	border-bottom-left-radius (length, optional, CSS property: border-bottom-left-radius)
	Radius of corner bottom left.

	border-bottom-right-radius (length, optional, CSS property: border-bottom-right-radius)
	Radius of corner bottom right.

	border-radius (optional, since version 4.13.14)
	Border radius of the four corners.

	border-top-left-radius (length, optional, CSS property: border-top-left-radius)
	Radius of corner top left.

	border-top-right-radius (length, optional, CSS property: border-top-right-radius)
	Radius of corner top right.

	class (text, optional)
	CSS class for this element.

	clip (optional, since version 3.5.10)
	Constrain the contents of the frame to its area or allow them to protrude.

	yes
	The contents are clipped at the frame border (default).

	no
	The contents are not clipped.

	framecolor (text, optional)
	The color of the frame around the object. This defaults to 'black'. Can be hidden with the special color '-'.

	id (text, optional)
	CSS id for this element.

	rulewidth (length, optional)
	The thickness of the frame that is drawn around the object.

Example

<Record element="data">
 <PlaceObject>
 <Frame framecolor="red" border-bottom-left-radius="10pt">
 <Image width="20" file="_samplea.pdf"/>
 </Frame>
 </PlaceObject>
</Record>

See also

The section about frames in the basics chapter.

Function

Define a function

Child elements

ClearPage, Column, Columns, ForAll, Group, LoadDataset, Loop, Message, NextFrame, NextRow, Param, PlaceObject, ProcessNode, SaveDataset, SetVariable, Switch, Value

Parent elements

Layout

Attributes

	name (text)
	The name of the function (with namespace prefix).

Example

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en"
 xmlns:fn="mynamespace">

 <Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="fn:add(3,4)" />
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>

 <Function name="fn:add">
 <Param name="a" />
 <Param name="b" />
 <Value select="$a + $b" />
 </Function>
 </Layout>

Print out the number 7.

See also

The chapter about programming.

Grid

Override the grid settings from SetGrid.

Child elements

(none)

Parent elements

Group, Pagetype

Attributes

	dx (optional, since version 2.3.11)
	Distance between two grid cells (horizontal)

	dy (optional, since version 2.3.46)
	Distance between two grid cells (horizontal)

	height (length, optional)
	Height of a grid cell.

	nx (number, optional)
	Number of grid cells in horizontal direction.

	ny (number, optional)
	Number of grid cells in vertical direction.

	width (length, optional)
	Set the width of a grid cell.

Remarks

nx and ny don’t make sense in Group.

Example

<Pagetype name="page wide" test=" $var > 10 ">
 <Margin left="1cm" right="2cm" top="1cm" bottom="1cm"/>
 <Grid width="10mm" height="14pt"/>
</Pagetype>

See also

The section about grids and the section about Groups (virtual objects).

Group

Create a virtual page that behaves like a real page but is not placed into the PDF.

Child elements

Contents, Grid

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	name (text)
	Name of the group that is created.

Example

<Record element="data">
 <Group name="Some group">
 <!-- Optional, taken from the current page -->
 <Grid width="10mm" height="10mm"/>
 <Contents>
 <PlaceObject column="3" row="2">
 <Textblock width="14">
 <Paragraph>
 <Value>Text</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <PlaceObject column="2" row="4">
 <Textblock width="14">
 <Paragraph>
 <Value>Next text</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Contents>
 </Group>
 <PlaceObject groupname="Some group" row="1" />
</Record>

See also

The section about Groups (virtual objects).

Groupcontents

since version 2.9.10

Insert the contents of a group (a virtual area)

Child elements

(none)

Parent elements

Td

Attributes

	name (text)
	The name of the group

Example

<Record element="data">
 <Group name="foo">
 <Contents>
 <PlaceObject column="1">
 <Image file="_samplea.pdf" width="5"/>
 </PlaceObject>
 </Contents>
 </Group>
 <PlaceObject>
 <Table>
 <Tr>
 <Td><Groupcontents name="foo"/></Td>
 </Tr>
 </Table>
 </PlaceObject>
</Record>

See also

The section about Groups (virtual objects).

HSpace

Two modes: with a given width, the space takes up the given amount.

With no width given: create a horizontal stretching space. The space will take up no width as a minimum but is able to stretch up to infinity. Useful in single line contexts. In normal text there will surprising little stretching involved due to the global paragraph optimization algorithm.
 You will see that all other word spaces will have the minimum width and the excessive whitespace is accumulated at the strechable space.

Child elements

(none)

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

	leader (text, optional, since version 2.3.50)
	The text that should be displayed instead of the space. For example a dot (.).

	leader-width (length, optional, since version 2.3.50)
	Distance between two leader text starting points

	minwidth (length, optional, since version 3.3.5)
	The (optional) minimum width of the inserted space.

	width (length, optional)
	Optional width of the space (a length).

Example

<PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>Hello</Value><HSpace/><Value>World</Value>
 </Paragraph>
 </Textblock>
</PlaceObject>

See also

The section text formatting.

Hyphenation

Suggest a hyphenation. This hyphenation will be used in the running text. See the example.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	language (optional, since version 4.3.12)
	The language for this hyphenation exception. The default is the main document language.

Example

<Hyphenation>su-per-cal-ifrag-ilis-tic-ex-pi-ali-do-cious</Hyphenation>

See also

The section Hyphenation / language settings.

I

Switch to italic text.

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

(none)

Example

<PlaceObject>
 <Textblock>
 <Paragraph>
 <I><Value>Italic text</Value></I>
 </Paragraph>
 </Textblock>
</PlaceObject>

See also

The section text formatting as well as the commands and <U>.

Image

Includes an external Graphic. Allowed graphic formats are PDF (.pdf), PNG (.png) and JPEG (.jpg). Other file types might be possible with external converters. See below for a limitation on the number of included PDF files.

Child elements

Value

Parent elements

A, B, Case, Clip, Color, Fontface, ForAll, Frame, I, Li, Loop, NoBreak, Otherwise, Overlay, Paragraph, PlaceObject, Position, Span, Td, Text, Transformation, U, URL, Until, While

Attributes

	bleed (optional, since version 2.9.5)
	Should the image size increase by the amount of bleed setting (Options)?

	auto
	If the image touches a paper edge, extend the image in that direction.

	no
	Do not extend the image.

	class (text, optional, since version 2.5.11)
	CSS class for this element.

	clip (optional)
	When yes, the image keeps its aspect ratio if both width and hight is given. To be able to fit the image into the given dimensions, the image gets clipped.

	yes
	Keep the aspect ratio and cut off left/right or top/bottom edges.

	no
	Distort the image to make it fit in the given area.

	dpiwarn (number, optional)
	Warn if the image gets lower resolution than given.

	fallback (optional, since version 2.3.77)
	The filename of the replacement image if the file is not found. If none given, a red 'file not found' image will gets displayed.

	file (text, optional)
	Filename of the image. Can be a file in the search path, an absolute file name, a file-URI for absolute paths (e.g. file:///path/to/image.pdf) or a location on the web (http, https).

	height (number or length, optional)
	Image height. One of 'auto' (default, take image width), length (such as '3cm') or number (in grid cells).

	id (text, optional, since version 2.5.11)
	CSS id for this element.

	imageshape (yes or no, optional, since version 4.9.8)
	Try to load an image shape. Defaults to no.

	imagetype (optional, since version 3.9.1)
	Set the converter to be used for the enclosed image (if any).

	margin-bottom (length, optional, since version 4.13.13)
	Extra space at the bottom of the image.

	margin-left (length, optional, since version 4.13.13)
	Extra space at the left of the image.

	margin-right (length, optional, since version 4.13.13)
	Extra space at the right of the image.

	margin-top (length, optional, since version 4.13.13)
	Extra space at the top of the image.

	maxheight (number or length, optional)
	The maximum height of the image. Only used when clip="no". Value is a number (grid cells) or a length.

	maxwidth (number or length, optional)
	The maximum width of the image. Only used when clip="no". Value is a number (grid cells), a length or the value »100%« for full width image.

	minheight (number or length, optional)
	The minimum height of the image. Only used when clip="no". Value is a number (grid cells) or a length.

	minwidth (number or length, optional)
	The minimum width of the image. Only used when clip="no". Value is a number (grid cells), a length or the value »100%« for full width image.

	opacity (number, optional, since version 4.3.15)
	Set image opacity (0-100, 100=fully opaque).

	padding (length, optional, since version 2.9.5)
	Set padding for all four sides.

	padding-bottom (length, optional, CSS property: padding-bottom, since version 2.5.11)
	Set the inner distance (width between contents and the border) to the bottom edge.

	padding-left (length, optional, CSS property: padding-left, since version 2.5.11)
	Set the inner distance (width between contents and the border) to the left edge.

	padding-right (length, optional, CSS property: padding-right, since version 2.5.11)
	Set the inner distance (width between contents and the border) to the right edge.

	padding-top (length, optional, CSS property: padding-top, since version 2.5.11)
	Set the inner distance (width between contents and the border) to the top edge.

	page (number, optional)
	The page number from the PDF. Default is 1 (include the first page).

	rotate (number, optional)
	Rotate the image in steps of 90°. The amount of movement is defined by the specified angle; if positive, the movement will be clockwise, if negative, it will be counter-clockwise.

	stretch (yes or no, optional, since version 4.3.8)
	Stretch image until one of maximum width and maximum height is reached. Useful if images should be as large as possible but should not use more than the given space.

	visiblebox (optional)
	The PDF box that represents the visible area of the included image. Default is “cropbox”.

	artbox
	Use the artbox as the visible area. The artbox is usually not contained in a PDF.

	bleedbox
	Use the bleedbox of the included PDF.

	cropbox
	Use the cropbox of the included PDF (default).

	mediabox
	Use the mediabox of the included PDF. This is the largest box.

	trimbox
	Use the trimbox of the includes PDF. The trimbox is the final paper size. For example, the trim box of an A4 PDF is 210mm x 297mm.

	width (number or length, optional)
	Image width. One of 'auto' (default, take image width), '100%' (whole area width), length (such as '3cm') or number (in grid cells).

Remarks

The values of the attributes naturalsize and maxsize can be ‘artbox’, ‘bleedbox’, ‘cropbox’, ‘mediabox’ and ‘trimbox’. These two values are used to
 enlarge the image for the bleed. In the second example below the designated view port of the image is defined in the artbox, but the image has a larger
 area (the cropbox) that is used for bleeding.

Example

<Record element="productdata">
 <PlaceObject column="{ $column }">
 <Image width="10" file="{ string(.) }"/>
 </PlaceObject>
</Record>

Takes the file name of the image from the contents of the current element in the data file (here: productdata). Sample data XML:

<productdata>image.pdf</productdata>

The following example reads a pdf file, extracts a page and make the given artbox (should be set in the pdf file) the width of 210mm.
 If we have an area in the pdf that is larger than the artbox, it will be larger than the given size.

<Record element="data">
 <PlaceObject column="0mm" row="0mm">
 <Image width="210mm" file="catalog.pdf" page="132" naturalsize="artbox"/>
 </PlaceObject>
</Record>

Info

The number of pages in a PDF file can be determined with the XPath function sd:number-of-pages(<filename or URI>).

Attention. The number of PDF files that can be included in a document is limited. This limit can be increased in is system dependant. On Mac OS X it can be queried with ulimit -a and set for example with ulimit -n 1024.

See also

The section about <Image> in the basics chapter, File organization

Include

Toplevel element for included layout files.

Child elements

DefineColor, DefineFontalias, DefineFontfamily, DefineTextformat, Hyphenation, LoadFontfile, Options, Pageformat, Pagetype, Record, SetGrid, SetVariable, Stylesheet, Switch

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	xml:base (optional)
	(not intended to be used, for error-free validation purpose only)

Example

The main file:

<?xml version="1.0" encoding="UTF-8"?>
<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en"
 xmlns:xi="http://www.w3.org/2001/XInclude">

 <xi:include href="sublayout.xml" />

 <Record element="data">
 <PlaceObject background="full" background-color="green">
 <Textblock>
 <Paragraph><Value>Hello world</Value></Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>

</Layout>

and the file sublayout.xml:

<?xml version="1.0" encoding="UTF-8"?>
<Include xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <DefineColor name="green" value="#0f0"/>
 <DefineColor name="gray" value="#ddd"/>

</Include>

Info

This command is obsolete. Use Layout instead.

See also

The section about Splitting layout sets of rules into individual files.

Initial

since version 2.9.7

Make some letters appear in a larger font at the beginning of the paragraph.

Child elements

Value

Parent elements

Case, ForAll, Loop, Otherwise, Paragraph, Until, While

Attributes

	color (text, optional, since version 2.9.0)
	Set the color of the initial. Defaults to black.

	fontfamily (text, optional)
	Choose the font family. Only »Regular« shape is used at the moment.

	padding-bottom (length, optional, since version 4.1.25)
	Insert space bottom of the initial.

	padding-left (length, optional)
	Insert space left of the initial.

	padding-right (length, optional)
	Insert space right of the initial.

	padding-top (length, optional, since version 4.1.25)
	Insert space top of the initial.

Example

<Textblock>
 <Paragraph>
 <Initial fontfamily="Large" padding-right="2pt">
 <Value select="'A'"/>
 </Initial>
 <Value>certain king had a beautiful garden,
 and in the garden stood a tree which bore golden
 apples.</Value>
 </Paragraph>
</Textblock>

Info

Make sure you set the font face for the surrounding Paragraph to get the spacing right (it defaults to text).

See also

InsertPages

Insert previously saved pages or reserve space for pages to be generted in the future.

There are two modes: the first mode is to first save some pages with SavePages and then insert the pages here. The second mode reserves some pages in the PDF (has to be known in advace) that are created in the future (“future mode”) with SavePages.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	name (text)
	The name of the saved pages.

	pages (number, optional, since version 3.7.12)
	Number of pages to be inserted in “future mode”.

Remarks

Useful if you require a certain amount of pages and you need to try out how many pages you get by typesetting onto virtual pages.

Also useful to create a table of contents after you have collected all the information and make it appear at the beginning of the document.

Example

<Record element="data">
 <SavePages name="foo">
 <Loop select="100">
 <PlaceObject>
 <Textblock>
 <Paragraph><Value>Hello world</Value></Paragraph>
 </Textblock>
 </PlaceObject>
 </Loop>
 </SavePages>
 <Message select="sd:count-saved-pages('foo')"></Message>
 <InsertPages name="foo"/>
</Record>

See also

The command <SavePages>, the section Virtual pages and Create table of contents in one go.

Italic

The font face to be used when the user switches to italic.

Child elements

(none)

Parent elements

DefineFontfamily

Attributes

	fontface (text)
	The name of the fontface.

Example

<LoadFontfile name="Helvetica" filename="helvetica-regular.otf"/>
<LoadFontfile name="Helvetica Bold" filename="helvetica-bold.otf"/>
<LoadFontfile name="Helvetica Italic" filename="helvetica-italic.otf"/>
<LoadFontfile name="Helvetica Bold Italic" filename="helvetica-bolditalic.otf"/>

<DefineFontfamily name="text" fontsize="12" leading="14">
 <Regular fontface="Helvetica"/>
 <Bold fontface="Helvetica Bold"/>
 <Italic fontface="Helvetica Italic"/>
 <BoldItalic fontface="Helvetica Bold Italic"/>
</DefineFontfamily>

See also

Command <DefineFontfamily>, chapter Using fonts.

Layout

This command is the root element in the Layout instructions.

Child elements

AddSearchpath, AttachFile, Compatibility, DefineColor, DefineColorprofile, DefineFontalias, DefineFontfamily, DefineGraphic, DefineMatter, DefineTextformat, Function, Hyphenation, LoadFontfile, Loop, Options, PDFOptions, Pageformat, Pagetype, PlaceObject, Record, SetGrid, SetVariable, Stylesheet, Switch, Trace, While

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	name (text, optional)
	A name for the layout. Optional, without any influence on the layout itself.

	require (text, optional, since version 4.15.10)
	A comma separated list of required default features. Currently supported features are luxor/lxpath and harfbuzz/fontforge.

	version (number, optional)
	Minimum publisher version required. If major or minor version differ, give a warning. Format: 1.6.12 (revision number can be left out).

Example

This is a complete example for a layout rule set. The first part is the data file (save as data.xml) and the second the layout instructions (layout.xml).

<root>
 <elt greeting="Hello world!" />
</root>

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">

 <Options mainlanguage="English (USA)"/>

 <Record element="root">
 <ProcessNode select="elt"/>
 </Record>

 <Record element="elt">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="@greeting"></Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </Record>
</Layout>

See also

Li

List item in an ordered or unordered list.

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

Case, ForAll, Loop, Ol, Otherwise, Ul, Until, While

Attributes

(none)

Example

<PlaceObject>
 <Textblock>

 <Value>First item</Value>
 <Value>Second item</Value>
 <Value>Third item</Value>

 </Textblock>
</PlaceObject>

See also

The section Enumeration lists as well as the commands and .

LoadDataset

Load an XML file previously written by SaveDataset (attribute name) or a well formed XML file (attribute filename). The regular data processing is interrupted and the contents of the data file is taken as a data source. If the file does not exist, the call to LoadDataset is ignored.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	filename (text, optional)
	Filename of the XML file to load. Example: myfile.xml.

	name (text, optional)
	Name of the data file. Example: toc

Example

<Record element="articles">
 <LoadDataset name="toc"/>
 <ClearPage/>
 <ProcessNode select="article"/>
</Record>

See also

Commands <Element>, <Attribute> and <SaveDataset> as well as the section Creation of XML structures.

LoadFontfile

Load a font file (.otf, .ttf, .pfb) and associate it with an internal name. If a glyph is not found in the font file, an error will be raised (this can be configured via the Options command). You can specify fallbacks as a child element of Loadfontfile.

Child elements

Fallback

Parent elements

Case, ForAll, Include, Layout, Loop, Otherwise, Until, While

Attributes

	features (text, optional, since version 3.9.29)
	A comma separated list of OpenType features, such as +liga,-kern

	filename (text)
	The name (with extension) of the font file.

	marginprotrusion (0 up to 100, optional)
	The amount of protrusion glyphs like -, . and - stick into the right margin. Highly font dependent. Defaults to 0.

	mode (optional, since version 3.9.29)
	Set the shaping mode of the font. Defaults to harfbuzz.

	fontforge
	The old and well tested font handler. Renders western scripts well, but no right-to-left or other complex scripts.

	harfbuzz
	The new renderer that will eventually handle all scripts including right-to-left.

	name (text)
	The internal name of the font file. To be used within DefineFontfamily.

	oldstylefigures (optional)
	Use oldstyle figures if the font includes them. (OpenType feature »onum«)

	yes
	Use oldstyle figures.

	no
	Use lining figures.

	smallcaps (optional)
	Use small caps glyphs when the font supplies them.

	yes
	Use small caps for this font.

	no
	Don’t switch to small caps (default).

	space (0 up to 100, optional)
	The natural width between words. Can be stretched by 30% and shrunk by 10%. Defaults to 25. The value is a percentile of the font size.

Example

Info

The fonts are optionally taken from the local search path. On Windows the path %WINDIR%\Fonts (usually C:\Windows\Fonts) and on Mac OS X the paths /Library/Fonts and /System/Library/Fonts can be used as fallbacks for fonts. This can be configured with the setting fontpath.

See also

Command <DefineFontfamily>, chapter Using fonts.

Loop

Repeat the contents of this element several times.

Child elements

A, Action, AddSearchpath, AttachFile, Attribute, B, Barcode, Bookmark, Box, Br, ClearPage, Clip, Color, Column, Columns, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, Element, Fontface, ForAll, Frame, Group, HSpace, Hyphenation, I, Image, Include, Initial, InsertPages, Layout, Li, LoadDataset, LoadFontfile, Loop, Message, NextFrame, NextRow, NoBreak, Options, Output, Overlay, Pageformat, Pagetype, Paragraph, PlaceObject, PositioningArea, PositioningFrame, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Span, Sub, Sup, Switch, Table, TableNewPage, Tablehead, Tablerule, Td, Tr, Trace, Transformation, U, Until, VSpace, Value, While

Parent elements

A, AtPageCreation, AtPageShipout, B, Case, Color, Columns, Contents, Element, Fontface, ForAll, Function, I, Layout, Li, Loop, NoBreak, Otherwise, Paragraph, PositioningArea, Record, SaveDataset, SavePages, SetVariable, Span, Table, Td, Text, Textblock, Tr, U, URL, Until, While

Attributes

	select (XPath expression)
	The number of loops. Must be a number or castable as a number.

	variable (text, optional)
	If given, store the current loop value in this variable. If omitted, the loop value is stored in the variable _loopcounter.

Example

<PlaceObject>
 <Table>
 <Loop select="5" variable="i">
 <Tr>
 <Td><Paragraph><Value select="$i"/></Paragraph></Td>
 </Tr>
 </Loop>
 </Table>
</PlaceObject>

See also

The section programming.

Makeindex

Sort and split a list of elements to make an index.

Child elements

(none)

Parent elements

Element, SaveDataset

Attributes

	pagenumber (text, optional, since version 2.7.11)
	The name of the attribute that holds the page numbers. Defaults to 'page'.

	section (text)
	Create an XML-element with this name for every section (letter) in the index.

	select (XPath expression)
	The xpath expression ($variable) that holds the element structure for the index.

	sortkey (text)
	The name of the attribute holding the indexentry (that should be sorted).

Example

Index generation works in two steps: First, collect all the entries in a Element structure, then, while saving the generated structure, sort the keys and group them with this command.

 <Record element="data">
 <LoadDataset name="index" />
 <SetVariable variable="indexentries">
 <Element name="indexentry">
 <Attribute name="name" select="'Home'" />
 <Attribute name="page" select="1" />
 </Element>
 <Element name="indexentry">
 <Attribute name="name" select="'House'" />
 <Attribute name="page" select="2" />
 </Element>
 <Element name="indexentry">
 <Attribute name="name" select="'Hello'" />
 <Attribute name="page" select="3" />
 </Element>
 <Element name="indexentry">
 <Attribute name="name" select="'Garage'" />
 <Attribute name="page" select="4" />
 </Element>
 </SetVariable>
 <SaveDataset name="index" elementname="Index">
 <Makeindex select="$indexentries" sortkey="name" section="part" />
 </SaveDataset>
 </Record>

 <Record element="Index">
 <ForAll select="part">
 <PlaceObject>
 <Table width="3" stretch="max">
 <Tr>
 <Td border-bottom="0.4pt" colspan="2">
 <Paragraph><Value select="@name" /></Paragraph>
 </Td>
 </Tr>
 <ForAll select="indexentry">
 <Tr>
 <Td>
 <Paragraph><Value select="@name" /></Paragraph>
 </Td>
 <Td>
 <Paragraph><Value select="@page" /></Paragraph>
 </Td>
 </Tr>
 </ForAll>
 </Table>
 </PlaceObject>
 </ForAll>
 </Record>

See also

The section Sorting of keyword indexes.

Margin

Set the margin of the document or master page.

Child elements

(none)

Parent elements

Pagetype

Attributes

	bottom (length)
	Bottom margin

	left (length)
	Left margin

	right (length)
	Right margin

	top (length)
	Top margin

Example

<Margin left="2cm" right="1cm" top="1cm" bottom="1cm"/>

See also

The command <Pagetype>, the section Page types.

Mark

Sets an invisible mark into the output. This is helpful when you want to know on which page the mark is placed on.

Child elements

(none)

Parent elements

Action

Attributes

	append (optional)
	When yes, append the current page to the previous values of the mark. Useful to get page ranges in an index. (Default is no.)

	yes
	Append the page number to the previous value of the mark.

	no
	Replace the previous value.

	pdftarget (yes or no, optional, since version 3.3.8)
	Set a pdf target that can be referenced by A

	select (XPath expression)
	The name of the mark to be set.

	shiftup (length, optional, since version 4.13.2)
	Raise the position of the hyperlink anchor by this amount.

Example

<Pageformat width="210mm" height="4cm"/>

<Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>
 Row
 Row
 Row
 Row
 </Value>
 </Paragraph>
 </Textblock>
 <Textblock>
 <Action>
 <Mark select="'textstart'"/>
 </Action>
 <Paragraph>
 <Value>
 Row
 Row
 Row
 </Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <ClearPage/>
 <Message select="sd:pagenumber('textstart')"></Message>
</Record>

Info

Marks get saved for subsequent runs.

See also

The command <Action> and the section Automatically generated directories.

Message

Writes a message onto the console and to the protocol file.

Child elements

Element, Value

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Loop, Otherwise, Record, SavePages, Table, Tr, Until, While

Attributes

	error (optional)
	Generate an error besides writing the message.

	yes
	Report an error.

	no
	Do not report an error (default).

	errorcode (number, optional, since version 2.3.69)
	If an error is raised, use this code on exit. Defaults to 1. Negative values are reserved for system purpose.

	exit (optional, since version 3.1.17)
	Tells the software to exit immediately.

	no
	The speedata Publisher continues with the PDF creation.

	yes
	The speedata Publisher exits without finishing the PDF file.

	select (XPath expression, optional)
	Contents of the message. You can alternatively specify the message by the child elements Value.

Example

See also

The section Troubleshooting / Debugging.

NextFrame

Switch to the next free frame of a positioning area.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	area (text)
	Name of the positioning area.

Example

<NextFrame area="articlearea"/>

See also

The section Force a frame switch in chapter about positioning frames.

NextRow

The virtual cursor is set on the next free row.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	area (text, optional)
	Name of the area of the virtual cursor.

	row (number, optional)
	The absolute number of the row for the cursor. If no row is given, the system tries to find a completely free row (perhaps on an empty page).

	rows (number, optional)
	The number of rows to clear. Defaults to 1.

Example

See also

The section Cursor in chapter about positioning frames.

NoBreak

since version 2.3.14

Don’t allow a line break within this element

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

	factor (number, optional)
	Multiplier for the font size when reduce=fontsize. Default value: 0.9. That means the font size gets decreased by 0.9 until the text fits the objects width.

	fontfamily (text, optional)
	The name of the fontface for text to be reduced. The default is »text« (lowercase t).

	maxwidth (number or length, optional)
	Set the maximum width of the text if it cannot be deduced from the current surrounding (such as table cells).

	reduce (optional)
	Reduce the text size if necessary.

	fontsize
	Reduces the text by decreasing the font size.

	cut
	Inserts text given in the attribute text if the paragraph is too long.

	keeptogether
	Don’t allow a line break within NoBreak (default)

	text (optional, since version 2.3.53)
	The text to be inserted if the paragraph should be cut. For example '…​'

Example

<PlaceObject>
 <Textblock width="5">
 <Paragraph>
 <NoBreak reduce="fontsize" factor="0.7">
 <Value>The quick brown fox jumps over the lazy dog.</Value>
 </NoBreak>
 <Value> </Value>
 <Value>The quick brown fox jumps over the lazy dog.</Value>
 </Paragraph>
 </Textblock>
</PlaceObject>

See also

The section Prevent text wrapping in the basics chapter.

Ol

Create an ordered list, just like in HTML

Child elements

ForAll, Li

Parent elements

Text, Textblock

Attributes

	fontfamily (text, optional, since version 4.3.1)
	The name of the font family for the paragraph. The default is »text« (lowercase t).

Example

<PlaceObject>
 <Textblock>

 <Value>First item</Value>
 <Value>Second item</Value>
 <Value>Third item</Value>

 </Textblock>
</PlaceObject>

See also

The section Enumeration lists as well as the commands and .

Options

Set publisher specific options.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	bleed (length, optional)
	The amount of bleed. Defaults to 0mm.

	bleedmarks (optional, since version 2.3.24)
	Trim marks will be placed in the PDF. The distance of the marks from the imaginary center is determined by the attribute trim, but is at least 5mm. The length of the cut marks is 1cm. The default of this attribute is no, that means no trim marks will be displayed. The trim marks show the additional trim distance.

	yes
	Show trim marks.

	no
	Don’t show trim marks (default).

	crop (yes, no or length, optional, since version 2.3.21)
	Crop the pages so that the pdf size of the page is at its minimum. Allowed values are yes, no and a length.

	cutmarks (optional)
	Cut marks / crop marks will be placed in the PDF. The distance of the marks from the imaginary center is determined by the attribute trim, but is at least 5mm. The length of the cut marks is 1cm. The default of this attribute is no, that means no cut marks will be displayed.

	yes
	Show crop marks.

	no
	Don’t show crop marks (default).

	defaultarea (text, optional, since version 2.7.4)
	Name of the area that is used as a default for placing text (commands Output and PlaceObject). Default is _page.

	ignoreeol (optional)
	Ignore newlines in data-xml

	yes
	Ignore newlines in data-xml

	no
	Respect newlines in data-xml

	imagenotfound (optional, since version 2.3.43)
	When an image is not found: should the publisher raise an error?

	warning
	Show a warning

	error
	Raise an error (default)

	interaction (yes or no, optional, since version 3.9.2)
	If no, switch off all interaction (hyperlinks).

	mainlanguage (optional)
	The default language for text (hyphenation and rendering). You can also set the default language on the command line and locally set it at Paragraph and Textblock.

	markdown-extensions (text, optional, since version 4.17.11)
	Set the markdown extensions. Must be a comma seprarated list of one or more of these values: table, strikethrough, linkify, tasklist, gfm, definitionlist, footnote, typographer, cjk.

	randomseed (number, optional, since version 3.9.24)
	Set the seed for the random number generator (a positive integer).

	reportmissingglyphs (optional, since version 3.1.17)
	Issue an error if glyphs are missing from a font.

	yes
	Show error message (default)

	no
	Do not show an error message

	warning
	Show a warning

	resetmarks (optional)
	Yes: ignore the marks file from previous run.

	yes
	Ignore marks from the previous run.

	no
	Use marks from the previous run (default).

	startpage (number, optional)
	Set the number of the first page.

Remarks

Bleed used to be 'trim' in version 2.7.6 and before.

Example

<Options
 cutmarks="yes"
 bleed="3mm"/>

Info

The list of languages and the short code known to the system are:

Ancient Greek (grc), Armenian (hy), Bahasa Indonesia (id), Basque (eu), Bulgarian (bg), Catalan (ca), Chinese (zh), Croatian (hr), Czech (cs), Danish (da), Dutch (nl), English (en_GB), English (Great Britain) (en_GB), English (USA) (en_US), Esperanto (eo), Estonian (et), Finnish (fi), French (fr), Galician (gl), German (de), Greek (el), Gujarati (gu), Hindi (hi), Hungarian (hu), Icelandic (is), Irish (ga), Italian (it), Kannada (kn), Kurmanji (ku), Latvian (lv), Lithuanian (lt), Malayalam (ml), Norwegian Bokmål (nb), Norwegian Nynorsk (nn), Other (--), Polish (pl), Portuguese (pt), Romanian (ro), Russian (ru), Serbian (sr), Serbian (cyrillic) (sc), Slovak (sk), Slovenian (sl), Spanish (es), Swedish (sv), Turkish (tr), Ukrainian (uk), Welsh (cy)

See also

Running the speedata publisher on the command line, How to configure the speedata publisher, Print output / crop marks.

Otherwise

Default branch of a Switch command.

Child elements

A, Action, AddSearchpath, AttachFile, Attribute, B, Barcode, Bookmark, Box, Br, ClearPage, Clip, Color, Column, Columns, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, Element, Fontface, ForAll, Frame, Group, HSpace, Hyphenation, I, Image, Include, Initial, InsertPages, Layout, Li, LoadDataset, LoadFontfile, Loop, Message, NextFrame, NextRow, NoBreak, Options, Output, Overlay, Pageformat, Pagetype, Paragraph, PlaceObject, PositioningArea, PositioningFrame, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Span, Sub, Sup, Switch, Table, TableNewPage, Tablehead, Tablerule, Td, Tr, Trace, Transformation, U, Until, VSpace, Value, While

Parent elements

Switch

Attributes

(none)

Example

See the example at Switch.

See also

The section programming.

Output

This command is similar to PlaceObject and is currently limited to output text which can be broken across positioning frames and which can wrap around objects.

Child elements

Text

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Loop, Otherwise, Record, SavePages, SetVariable, Until, While

Attributes

	allocate (optional)
	Should text flow around already allocated objects? This currently works on the current page only.

	yes
	Regular behavior: the text does not flow around objects.

	auto
	Text flows around allocated objects.

	area (text, optional)
	The name of the positioning frame for the text.

	balance (optional, since version 3.2.1)
	Balance text on the last page (experimental)

	yes
	Balance the last page

	no
	Do not balance the last page (default)

	last-padding-bottom-max (length, optional, since version 3.2.1)
	The maximum padding on the last page when valign-last is set to bottom

	row (number, optional)
	The starting row for the text.

	valign-last (optional, since version 3.2.1)
	When balancing: align the last columns at the top (default) or bottom (experimental).

	top
	Top alignment (default)

	bottom
	Align at the bottom

Example

<Pagetype name="page" test="true()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 <PositioningArea name="text">
 <PositioningFrame width="9" height="4" row="1" column="1"/>
 <PositioningFrame width="9" height="4" row="1" column="11"/>
 <PositioningFrame width="9" height="4" row="6" column="1"/>
 <PositioningFrame width="9" height="4" row="6" column="11"/>
 </PositioningArea>
 </Pagetype>
 <Record element="data">
 <Output area="text">
 <Text>
 <Paragraph fontfamily="text">
 <Value>A wonderful serenity has taken possession of my entire soul,...</Value>
 </Paragraph>
 </Text>
 </Output>
 </Record>

See also

The command <Text> in the basics chapter.

Overlay

since version 2.3.26

Overlays the first element with the following »positions«.

Child elements

A, Barcode, Box, Circle, Frame, Image, Position, Rule, Switch, Table, Textblock, Transformation

Parent elements

Case, ForAll, Loop, Otherwise, PlaceObject, Td, Until, While

Attributes

(none)

Example

<PlaceObject>
 <Table>
 <Tr>
 <Td>
 <Overlay>
 <Image width="5" height="4" file="_samplea.pdf"/>
 <Position x="0" y="0">
 <Box width="2" height="2" background-color="white"/>
 </Position>
 <Position x="0" y="0">
 <Barcode select="'speedata'" type="QRCode" width="2" height="2"/>
 </Position>
 </Overlay>
 </Td>
 <Td>
 <Image file="_sampleb.pdf" width="5" height="4" clip="no"/>
 </Td>
 </Tr>
 </Table>
</PlaceObject>

which gives the following output

See also

The section Image behind the text in chapter about tables.

Pageformat

The size of the PDF pages. Defaults to 210mm width and 297mm height (A4)

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	height (length)
	The height of the PDF pages.

	width (length)
	Width of the PDF pages.

Example

<Pageformat width="150mm" height="150mm"/>

See also

The section Print output / crop marks.

Pagetype

Define a master page. A master page is chosen depending on the criterion given with the attribute »test«.

Child elements

AtPageCreation, AtPageShipout, ForAll, Grid, Margin, PositioningArea

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	columnordering (optional, since version 4.1.18)
	Reverse the logical column ordering if in rtl mode. Only changes areas that are next to each other.

	ltr
	The columns are ordered from first defined to last defined. (default)

	rtl
	Reverse the order of columns. The first defined column will be the last column.

	defaultcolor (text, optional, since version 2.9.3)
	The default text color for this page (unless overridden in Paragraph or Textblock). Defaults to 'black'.

	height (length, optional, since version 4.1.13)
	The height of the page. Defaults to the global setting.

	name (text)
	Name of the master page. It is for informational purpose and as a selection for ClearPage.

	part (text, optional, since version 4.3.4)
	Set the part of the document for this page type (mainmatter is the default).

	test (XPath expression)
	If this xpath expression evaluates to true, this page is taken as a master page.

	width (length, optional, since version 4.1.13)
	The width of the page. Defaults to the global setting.

Remarks

The contents of the element at AtPageCreation is executed, as soon as something will be placed on the page. The commands inside AtPageShipout are executed when switching to a new page.

When creating a new page, all page types are tried in reversed order. That means that the later defined master pages have a higher priority. This is important if more than one test in a pagetype definition evaluates to true.

Example

<Pagetype name="right page" test=" sd:odd(sd:current-page()) "/>

<Pagetype name="left page" test=" sd:even(sd:current-page()) "/>

<Pagetype name="main part right" test=" sd:odd(sd:current-page()) and $chapter='main' "/>

<Pagetype name="right page" test="sd:odd(sd:current-page())">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 <PositioningArea name="frame1">
 <PositioningFrame width="12" height="30" column="2" row="2"/>
 <PositioningFrame width="12" height="30" column="16" row="2"/>
 </PositioningArea>
 <AtPageCreation>
 <PlaceObject column="1">
 <!-- header -->
 </PlaceObject>
 </AtPageCreation>
 <AtPageShipout>
 <PlaceObject column="1">
 <!-- footer -->
 </PlaceObject>
 </AtPageShipout>
</Pagetype>

See also

The section Page types and the command DefineMatter.

Param

Specify a parameter for a function definition.

Child elements

(none)

Parent elements

Function

Attributes

	name (text)
	The name of the parameter.

Example

See the example at Function

See also

Paragraph

Insert a paragraph of text. The width of the paragraph is inherited from the surrounding element.

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Initial, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

Case, ForAll, Loop, Otherwise, SetVariable, Td, Text, Textblock, Until, While

Attributes

	allowbreak (text, optional)
	(Experimental!) list of characters where a line break is possible. Space character is not implied when this attribute is set.

	bidi (optional, since version 4.1.14)
	Analyze direction of the text. Useful for mixing left-to-right and right-to-left text.

	yes
	Analyze text.

	no
	Don’t handle mixed directions (default).

	class (text, optional)
	CSS class for this paragraph.

	color (text, optional, CSS property: color)
	Color of the paragraph. Must be defined with DefineColor before use.

	direction (text, optional, since version 4.1.12)
	The text direction (ltr or rtl)

	font-outline (length, optional, since version 4.13.15)
	Set the line width of the font outline.

	fontfamily (text, optional, CSS property: font-family)
	The name of the font family for the paragraph. The default is »text« (lowercase t).

	html (optional, since version 4.1.2)
	Set the HTML processing mode. Defaults to 'all'.

	all
	Interpret HTML starting from the current element.

	inner
	Ignore the name of the outer element.

	off
	Switch off HTML in this paragraph. Use only the text value.

	id (text, optional)
	CSS id for this paragraph.

	label-left (text, optional, since version 4.1.4)
	A text to the left of the paragraph.

	label-left-align (optional, since version 4.1.4)
	Alignment of the text.

	left
	Left aligned

	right
	Right aligned

	label-left-distance (length, optional, since version 4.1.4)
	Horizontal distance between text and paragraph (if right aligned).

	label-left-width (length, optional, since version 4.1.4)
	Width of the text.

	language (optional)
	Name of the language for hyphenation and rendering.

	padding-left (length, optional, since version 3.9.27)
	Set the left padding, i.e. the inner distance to the allocated area.

	padding-right (length, optional, since version 3.9.27)
	Set the right padding, i.e. the inner distance to the allocated area.

	role (optional, since version 3.5.7)
	The role for PDF/UA (accessibility, tagged PDF)

	H1
	Heading level 1

	P
	A paragraph.

	textformat (text, optional)
	Name of the textformat that is applied to the paragraph. If none is specified the textformat text is used.

Example

<Textblock>
 <Paragraph fontfamily="Title">
 <Value>Hello World</Value>
 </Paragraph>
</Textblock>

See also

The section text formatting and the command Options for a list of all languages.

PDFOptions

since version 2.3.39

Set PDF options like number of copies and such

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Contents, Layout, Record, SavePages

Attributes

	author (text, optional, since version 3.1.18)
	Set the author of the document

	colorprofile (optional, since version 3.5.7)
	Set the name of the color profile. Has to be defined with DefineColorprofile.

	creator (text, optional, since version 4.9.2)
	Set the creator application of the document

	displaymode (optional, since version 4.11.8)
	Select the display mode when opening PDF document (mainly with Acrobat).

	attachments
	Display the attachment pane.

	bookmarks
	Display the bookmarks pane (only works if the PDF document contains at least one bookmark).

	fullscreen
	Open the document in fullscreen mode.

	none
	Do not display a special pane.

	thumbnails
	Display the thumbnail pane.

	dpi (number, optional, since version 4.17.10)
	Set the maximum DPI number for PNG/JPEG images.

	duplex (optional, since version 2.3.47)
	Set viewer preference to one or two page printing. Default: empty.

	simplex
	One page per sheet

	duplexflipshortedge
	Two pages per sheet and flip on short edge

	duplexfliplongedge
	Two pages per sheet and flip on long edge

	format (optional, since version 3.5.7)
	Set the output format. Currently limited to PDF/X-3, PDF/X-4 and PDF/UA.

	PDF/X-3
	Set the output to PDF/X-3.

	PDF/X-4
	Set the output to PDF/X-4.

	PDF/UA
	Set the output to PDF/UA.

	hyperlinkbordercolor (text, optional, since version 4.11.8)
	Set the border color of hyperlinks when showhyperlinks is set. The default is black. (Renamed from hyperlinksbordercolor.)

	hyperlinkborderwidth (text, optional, since version 4.15.6)
	Set the border width of hyperlinks when showhyperlinks is set. The default is 1pt.

	keywords (text, optional, since version 3.1.24)
	Set the keywords of the document (comma separated list).

	numcopies (number, optional)
	Set the number of copies. At most 5 are allowed in the PDF specification.

	pagelayout (optional, since version 4.15.1)
	Specify the layout of the pages in Adobe Acrobat.

	singlepage
	Display one page at a time.

	onecolumn
	Display the pages in one column.

	twocolumnleft
	Display the pages in two columns, with odd- numbered pages on the left.

	twocolumnright
	Display the pages in two columns, with odd- numbered pages on the right.

	twopageleft
	Display the pages two at a time, with odd-numbered pages on the left.

	twopageright
	Display the pages two at a time, with odd-numbered pages on the right.

	picktraybypdfsize (optional, since version 2.3.46)
	Activate the check box in the PDF viewer for choosing the paper tray based on the page size.

	yes
	Activate checkbox

	no
	Deactivate checkbox

	printscaling (optional, since version 2.3.46)
	Should the printer scale the pages?

	appdefault
	Use the default from the PDF viewer

	none
	No page scaling

	showbookmarks (yes or no, optional, since version 3.9.8)
	Show bookmarks in the PDF viewer when opening the document. Deprecated - use displaymode instead.

	showhyperlinks (yes or no, optional, since version 4.3.15)
	Show hyperlinks in Adobe Acrobat and perhaps other PDF viewers.

	subject (text, optional, since version 3.1.24)
	Set the subject of the document

	title (text, optional, since version 3.1.18)
	Set the title of the document

Example

<PDFOptions numcopies="3"/>

See also

The section Print output / crop marks.

PlaceObject

Outputs a rectangular object (image, table, box, barcode or textblock).

Child elements

A, Barcode, Bookmark, Box, Circle, Clip, Frame, Image, Overlay, Rule, Switch, Table, Textblock, Transformation

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Layout, Loop, Otherwise, Record, SavePages, SetVariable, Until, While

Attributes

	allocate (optional)
	Determines if the area of the object is marked as »allocated«. With allocate="no", the cursor position is not changed.

	yes
	Occupy space in the grid (default for grid positioning).

	no
	Don’t allocate space in the grid (default for absolute positioning).

	allocate-bottom (number or length, optional, since version 2.9.6)
	Additional allocation area to the bottom.

	allocate-left (number or length, optional, since version 2.9.6)
	Additional allocation area to the left.

	allocate-right (number or length, optional, since version 2.9.6)
	Additional allocation area to the right.

	allocate-top (number or length, optional, since version 2.9.6)
	Additional allocation area to the top.

	area (text, optional)
	Name of the (positioning) area, the object is placed in. If no area is given, the object is placed on the main area, the page (this is the area that contains all grid cells).

	background (optional)
	Fill the background of the object (full grid cells) with a color, given by background-color.

	full
	Fill background with the given color (in background-color).

	without
	Empty background

	background-color (text, optional)
	Color of the background if ›background‹ is set to ›full‹.

	border-bottom-left-radius (length, optional)
	Radius of corner bottom left.

	border-bottom-right-radius (length, optional)
	Radius of corner bottom right.

	border-top-left-radius (length, optional)
	Radius of corner top left.

	border-top-right-radius (length, optional)
	Radius of corner top right.

	column (number or length, optional)
	If contents is a number: the grid cell from the left margin of the area. If it is a length: the absolute position from the left paper margin. If this attribute is omitted, the system tries to place the object by itself.

	frame (optional)
	Draw a frame around the object. You need to supply the frame color.

	solid
	Draw a frame around the object.

	without
	Don’t draw a frame around the object.

	framecolor (text, optional)
	The color of the frame around the object. Only makes sense in combination with the attribute 'frame'.

	groupname (text, optional)
	The name of the group that gets output. When given a groupname, PlaceObject should not contain any objects.

	halign (optional, since version 2.3.55)
	When an object is placed on the grid and it’s width is not a multiple of grid width, there is a space left on the page between the object an the next grid cell. With this attribute you can instruct the software where to place the gap.

	left
	The object is aligned at the left.

	center
	The object is aligned so that the space to the left is the same as to the right.

	right
	The object is aligned to the right.

	hreference (optional)
	Determines the placement of the object relative to the given column. If 'left' (which is the default), the given column is the left border of the object. If 'right', the column determines the right edge of the object.

	left
	The object is placed in given column.

	center
	The column determines the center of the object. Works only with absolute positioning.

	right
	The given columns determines the right edge of the border.

	keepposition (optional)
	Don’t move the virtual cursor to the next free space

	yes
	Don’t move the virtual cursor.

	no
	Move the virtual cursor (default).

	maxheight (number, optional)
	Only used for multi-page table: the maximum height of tables.

	origin-x (optional)
	The origin for rotation.

	left
	The origin is at the left hand side.

	center
	The origin is in the center of the object.

	right
	The origin is at the right hand side.

	origin-y (optional)
	The origin for rotation (on the vertical axis)

	top
	Rotation around a point at the top.

	center
	Rotate around the vertical center.

	bottom
	Rotate around a point at the bottom.

	page (number, optional)
	The page (later in the PDF), the object should appear on. Number of the keyword »next« for the next page.

	rotate (number, optional)
	Rotates the object. The amount of movement is defined by the specified angle; if positive, the movement will be clockwise, if negative, it will be counter-clockwise. When the angle is != 0 then grid allocation is turned off.

	row (number or length, optional)
	The row where the object is placed. If none given, the publisher tries to find a row by itself. You can give a number (in grid cells) or an absolute value (from top left).

	rulewidth (length, optional)
	The thickness of the frame that is drawn around the object. Only makes sense in combination with the attribute 'frame'.

	valign (optional)
	When an object is placed on the grid and it’s height is not a multiple of grid height, there is a space left on the page between the object an the next grid cell. With this attribute you can instruct the software where to place the gap.

	top
	The object is aligned at the top.

	middle
	The object is aligned so that the space at the top is the same as at the bottom.

	bottom
	The object is aligned at the bottom.

	vreference (optional)
	Sets the placement of the object relative to the given row.

	bottom
	The row determines the bottom edge of the object.

	middle
	If 'middle', the given row is the center of the object. Works only with absolute positioning.

	top
	If 'top' (default), the given row is the top border of the object.

Example

Positioning inside the grid:

<Record element="image">
 <PlaceObject column="12" frame="solid" framecolor="red">
 <Image width="10" file="_samplea.pdf"/>
 </PlaceObject>
</Record>

Absolute positioning (from top left edge):

<Record element="image">
 <PlaceObject column="1cm" row="4cm" frame="solid" framecolor="red">
 <Image width="10" file="_samplea.pdf"/>
 </PlaceObject>
</Record>

Info

The objects can be placed in a grid (when the value in the attributes row and column are numbers) or they can be placed with absolute positions where the origin is at the top and left border of the page.

See also

The detailed description in Outputting objects.

Position

since version 2.3.26

Add an element to the current Overlay.

Child elements

Barcode, Box, Circle, Frame, Image, Rule, Switch, Table, Textblock, Transformation

Parent elements

Overlay

Attributes

	x (number)
	The horizontal position (0=left, 100=right).

	y (number)
	The vertical position (0=bottom, 100=top).

Example

See the example at Overlay

See also

The section Image behind the text in chapter about tables.

PositioningArea

Describes an area which contains one or more frames. Elements can be placed within these frames.

Child elements

Loop, PositioningFrame, Switch

Parent elements

Case, ForAll, Loop, Otherwise, Pagetype, Until, While

Attributes

	framecolor (text, optional, since version 2.9.12)
	Set the color of the frame in grid=yes mode. Defaults to 'red'

	name (text)
	Name of the area.

Example

<Pagetype name="right page" test="sd:odd(sd:current-page())">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 <PositioningArea name="frame1">
 <PositioningFrame width="12" height="30" column="2" row="2"/>
 <PositioningFrame width="12" height="30" column="16" row="2"/>
 </PositioningArea>
</Pagetype>

See also

The section Areas on the page (PositioningArea).

PositioningFrame

Defines a rectangular area for objects.

Child elements

(none)

Parent elements

Case, ForAll, Loop, Otherwise, PositioningArea, Until, While

Attributes

	column (number)
	First column of the frame, in grid cells.

	height (number)
	The height of the frame in grid cells.

	row (number)
	The row number relative to the grid.

	width (number)
	The width of the frame in grid cells.

Example

<Pagetype name="right page" test="sd:odd(sd:current-page())">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm"/>
 <PositioningArea name="frame1">
 <PositioningFrame width="12" height="30" column="2" row="2"/>
 <PositioningFrame width="12" height="30" column="16" row="2"/>
 </PositioningArea>
</Pagetype>

See also

The section Areas on the page (PositioningArea).

ProcessNode

Executes all given nodes. The elements, that are to be executed, are given with the attribute selection.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	limit (number, optional, since version 2.5.6)
	Limits the number of items processed with this command

	mode (text, optional)
	Name of the mode. This must match the mode at the corresponding Record element. With this it is possible to have different rules for the same element.

	select (XPath expression)
	Selection of child elements, that are to be processed.

Example

<ProcessNode select="*" mode="sum" />

See also

The section about Structure of the data file and the layout rules.

Record

Contains the instructions when the publisher processes the element in the data file with the given name. The record matching the root element will be called by the software automatically, all further data handling must be done by the user.

Child elements

AddSearchpath, AttachFile, Bookmark, ClearPage, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, ForAll, Group, Hyphenation, Include, InsertPages, Layout, LoadDataset, Loop, Message, NextFrame, NextRow, Options, Output, PDFOptions, Pageformat, Pagetype, PlaceObject, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Switch, Until, Value, While

Parent elements

Include, Layout

Attributes

	element (text)
	The name of the element the record matches.

	mode (text, optional)
	Name of the mode that matches the mode in ProcessNode.

Example

<Record element="url" mode="output">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>website of speedata</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

See also

The section about Structure of the data file and the layout rules.

Regular

The (symbolic) name of the fontface for regular text, i.e. without bold or italic.

Child elements

(none)

Parent elements

DefineFontfamily

Attributes

	fontface (text)
	The symbolic name of the font file.

Example

<DefineFontfamily name="Title" fontsize="12" leading="14">
 <Regular fontface="Helvetica Regular"/>
 <Bold fontface="Helvetica Bold"/>
 <Italic fontface="Helvetica Italic"/>
 <BoldItalic fontface="Helvetica Bold Italic"/>
</DefineFontfamily>

This font family can now be accessed like this:

<Textblock fontfamily="Title">
 <Paragraph>
 <Value>...<Value>
 </Paragraph>
</Textblock>

See also

Command <DefineFontfamily>, chapter Using fonts.

Rule

Draw a horizontal or vertical rule in the grid.

Child elements

(none)

Parent elements

Clip, Frame, Overlay, PlaceObject, Position, Transformation

Attributes

	color (text, optional, CSS property: background-color)
	The color of the rule. Defaults to black.

	dashed (optional, since version 2.3.50)
	Use a dashed rule instead of a solid rule.

	yes
	Draw a dashed rule.

	no
	Draw a solid rule.

	direction ()
	The direction of the rule.

	horizontal
	Horizontal rule

	vertical
	Vertical rule

	length (number or length)
	The length of the rule in grid cells or as an absolute length.

	rulewidth (number or length, optional, CSS property: height)
	The rule thickness given in grid cells or as a length.

Example

<Record element="data">
 <PlaceObject>
 <Rule direction="horizontal" length="10" rulewidth="3"/>
 </PlaceObject>
</Record>

See also

The section about rules in the basics chapter.

SaveDataset

Saves an element/attribute structure to be used in the next publisher run. The contents must have a tree structure.

Child elements

Copy-of, Element, ForAll, Loop, Makeindex, SortSequence

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	attributes (XPath expression, optional)
	The variable (as an XPath expression, e.g. $foo) which contains Attribute Elements. These attributes are added to the root element.

	elementname (text)
	Name of the root element that surrounds the elements given by the child elements.

	name (text)
	Name of the file. Example: toc

	select (XPath expression, optional)
	Alternative to giving the data structure in the child elements.

Example

 <Record element="data">
 <SetVariable variable="attributesvar">
 <Attribute name="att1" select="'Hello'" />
 <Attribute name="att2" select="123" />
 </SetVariable>

 <SaveDataset name="toc" elementname="root" attributes="$attributesvar">
 <Element name="child">
 <Attribute name="attchild" select="999"/>
 </Element>
 </SaveDataset>
 </Record>

This code saves an XML file to the disc which has this structure:

<root att1="Hello" att2="123">
 <child attchild="999"/>
</root>

<SaveDataset name="toc" elementname="Contents">
 <Copy-of select="$contents"/>
</SaveDataset>

is equivalent to

<SaveDataset name="toc" elementname="Contents" select="$contents"/>

See also

Commands <Attribute>, <Element> and <LoadDataset> as well as the section Creation of XML structures.

SavePages

This command is used for two different but similar purposes.

1: Everything enclosed in SavePages is saved internally and not placed into the PDF. Useful if the output might be discarded.

2: “Future mode”: Create pages that have been previously reserved by InsertPages.

Child elements

AddSearchpath, AttachFile, Bookmark, ClearPage, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, ForAll, Group, Hyphenation, Include, InsertPages, Layout, LoadDataset, Loop, Message, NextFrame, NextRow, Options, Output, PDFOptions, Pageformat, Pagetype, PlaceObject, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Switch, Until, Value, While

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	name (text)
	The name of the discarded output (1) or for the reserved pages (2). For later/earlier retrieval with InsertPages.

Remarks

The second mode has been introduced in version 3.7.12.

Example

First mode:

<Record element="data">
 <SavePages name="foo">
 <Loop select="100">
 <PlaceObject>
 <Textblock>
 <Paragraph><Value>Hello world</Value></Paragraph>
 </Textblock>
 </PlaceObject>
 </Loop>
 </SavePages>
 <Message select="sd:count-saved-pages('foo')"/>
 <InsertPages name="foo"/>
</Record>

“Future mode”

<Layout xmlns="urn:speedata.de:2009/publisher/en"
 xmlns:sd="urn:speedata:2009/publisher/functions/en">
 <Pageformat height="5cm" width="5cm"/>

 <Record element="data">
 <InsertPages name="firstpage" pages="1"/>
 <Loop select="4" variable="n">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="$n" />
 </Paragraph>
 </Textblock>
 </PlaceObject>
 <ClearPage />
 </Loop>
 <SavePages name="firstpage">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>This will be the first page</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
 </SavePages>
 </Record>
</Layout>

See also

The command <InsertPages>, the section Virtual pages and Create table of contents in one go.

SetGrid

Set size of the grid cells. All objects are placed in the grid.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	dx (optional, since version 2.3.11)
	Distance between two grid cells (horizontal)

	dy (optional, since version 2.3.46)
	Distance between two grid cells (horizontal)

	height (length, optional)
	The height of a grid cell. Use either height or ny, but not both.

	nx (number, optional)
	Specify the number of grid cells in horizontal direction. Use either nx or width, not both.

	ny (number, optional)
	Set the number of grid cells in vertical direction. Give ny or height, but not both.

	width (length, optional)
	The width of a grid cell. Use either width or nx, not both.

Example

<SetGrid width="4mm" height="14pt"/>

See also

The section about page grids.

SetVariable

Associates a value with a variable name. The value can be a simple value or a more complex one consisting of several elements.

Child elements

Attribute, ClearPage, Column, Columns, Copy-of, Element, ForAll, Loop, Output, Paragraph, PlaceObject, SortSequence, Switch, Table, TableNewPage, Tablehead, Tablerule, Td, Tr, Value

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Function, Include, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	execute (optional, since version 4.11.8)
	Execute the contents of setvariable now or execute it on usage.

	now
	Execute the contents during SetVariable (default).

	later
	Execute the contents when evaluated during Copy-of. Experimental.

	select (XPath expression, optional)
	The value of the contents.

	trace (optional)
	Show information about the assignment in the log file.

	yes
	Show information.

	no
	Don’t show information (default).

	type (optional, since version 4.3.10)
	Set the data type of the variable. Currently only supported for MetaPost variables.

	sd:any
	The default (any) datatype for variables in the speedata layout language.

	mp:boolean
	A MetaPost boolean value.

	mp:cmykcolor
	A MetaPost CMYK color.

	mp:numeric
	A MetaPost numeric value.

	mp:string
	A MetaPost string value.

	mp:rgbcolor
	A MetaPost RGB color.

	variable (text)
	The name of the variable that holds the contents.

Remarks

Variables have global scope.

Example

<Record element="product">
 <SetVariable variable="wd" select="5"/>
 <PlaceObject>
 <Textblock width="{ $wd }">
 <Paragraph>
 <Value select="$articlenumber"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

The following example shows a more complex scenario: you can collect complex elements in a variable.

<Record element="products">
 <SetVariable variable="articletext"/>
 <ProcessNode select="article"/>
 <PlaceObject>
 <Textblock>
 <Value select=" $articletext "/>
 </Textblock>
 </PlaceObject>
</Record>

<Record element="article">
 <SetVariable variable="articletext">
 <!-- the previous contents is added -->
 <Value select="$articletext"/>
 <Paragraph>
 <Value select=" @description "/>
 </Paragraph>
 </SetVariable>
</Record>

See also

The sections Programming and Create and use images with MetaPost.

SortSequence

Sort a list.

Child elements

(none)

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, Element, ForAll, Loop, Otherwise, Record, SaveDataset, SavePages, SetVariable, Until, While

Attributes

	criterion (text)
	Name of the attribute that is used as the sort key.

	numerical (optional, since version 3.1.21)
	Sort alphabetical or numerical

	yes
	Sort alphabetical

	no
	Sort alphabetical (default)

	order (optional, since version 3.1.22)
	Select the sorting order

	ascending
	Use ascending sort order (default)

	descending
	Use descending sort order

	removeduplicates (text, optional)
	If this attribute is used then it contains the name of the data-attribute that gets evaluated when duplicates are eliminated.

	select (XPath expression)
	The data that should be sorted.

Example

Data:

<data>
 <elt value="one"/>
 <elt value="two"/>
 <elt value="three"/>
</data>

Layout:

<Record element="data">
 <SetVariable variable="unsorted" select="*"/>
 <SetVariable variable="sorted">
 <SortSequence select="$unsorted" criterion="value"/>
 </SetVariable>
 <PlaceObject>
 <Textblock>
 <ForAll select="$sorted">
 <Paragraph><Value select="@value"></Value></Paragraph>
 </ForAll>
 </Textblock>
 </PlaceObject>
</Record>

See also

The section Sorting data.

Stylesheet

Load a CSS file or define CSS rules

Child elements

(none)

Parent elements

Include, Layout

Attributes

	filename (text, optional)
	The filename of the CSS stylesheet including the file extension.

Remarks

If no filename is given, the speedata Publisher expects the CSS rules as the contents of this element.

Example

<Stylesheet filename="style.css" />

<Stylesheet>
 frame {
 border-bottom-right-radius: 1cm;
 border-bottom-left-radius: 1cm;
 border-top-right-radius: 1cm;
 border-top-left-radius: 1cm;
 }
 box {
 background-color: red;
 }
</Stylesheet>

See also

The section about CSS.

Span

since version 3.1.15

Surround text by styling options.

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

	background-color (text, optional, CSS property: background-color)
	The background color of the content

	background-padding-bottom (length, optional, CSS property: background-padding-bottom)
	The bottom padding of the background color (can be negative)

	background-padding-top (length, optional, CSS property: background-padding-top)
	The top padding of the background color (can be negative)

	class (text, optional)
	CSS class for this element.

	fontfamily (text, optional, since version 4.1.14)
	The name of the font family to switch to.

	id (text, optional)
	CSS id for this element.

	language (optional, since version 4.1.10)
	Name of the language for hyphenation and rendering.

	letter-spacing (length, optional, CSS property: letter-spacing, since version 3.5.2)
	Increase spacing between glyphs.

Example

<Stylesheet>
 .green { background-color: lightgreen; }
</Stylesheet>

<Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>green</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

See also

The command Options for a list of all languages.

Sub

Subscript text.

Child elements

Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

(none)

Example

<PlaceObject>
 <Textblock>
 <Paragraph><Value>Text</Value>_{<Value>low</Value>}</Paragraph>
 </Textblock>
</PlaceObject>

See also

The section text formatting as well as the command <Sup>

Sup

Superscript text.

Child elements

Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

(none)

Example

<PlaceObject>
 <Textblock>
 <Paragraph><Value>Text</Value>^{<Value>high</Value>}</Paragraph>
 </Textblock>
</PlaceObject>

See also

The section text formatting as well as the command <Sub>

Switch

Create an if-then-else construct. The test attribute of each Case commands is evaluated until it yields true. The contents of the Case gets executed. If no test succeeds, the (optional) Otherwise gets executed.

Child elements

Case, Otherwise

Parent elements

A, AtPageCreation, AtPageShipout, B, Case, Color, Columns, Contents, Element, Fontface, ForAll, Function, I, Include, Layout, Li, Loop, NoBreak, Otherwise, Overlay, Paragraph, PlaceObject, Position, PositioningArea, Record, SavePages, SetVariable, Span, Table, Tablefoot, Tablehead, Td, Text, Textblock, Tr, U, URL, Until, While

Attributes

(none)

Example

<Record element="data">
 <SetVariable variable="counter" select="3"/>
 <Switch>
 <Case test=" $counter < 5">
 <SetVariable variable="text" select="'Less than 5'"/>
 </Case>
 <Case test=" $counter < 20">
 <SetVariable variable="text" select="'Less than 20'"/>
 </Case>
 <Otherwise>
 <SetVariable variable="text" select="'Larger or equal to 20'"/>
 </Otherwise>
 </Switch>
 <PlaceObject>
 <Textblock>
 <Paragraph><Value select="$text"/></Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

Info

You have to be careful to encode the test with the rules of XML: that is »less« must be written as <, since < must not be part of text contents.

A Switch may be part of nearly all commands. It dissolves and only the contents of the Case or Otherwise gets replaced by the whole construct.

See also

The section programming.

Table

Create a table that is similar to the HTML table model.

Child elements

Columns, Copy-of, ForAll, Loop, Message, Switch, TableNewPage, Tablefoot, Tablehead, Tablerule, Tr

Parent elements

Case, Clip, ForAll, Frame, Loop, Otherwise, Overlay, PlaceObject, Position, SetVariable, Td, Transformation, Until, While

Attributes

	balance (optional, since version 3.1.24)
	Tries to balance the table on the last page according to the number of frames. Experimental!

	yes
	Tries to balance.

	no
	First column will filled first, default

	border-collapse (optional)
	Determine if adjacent table cells share borders. The behavior of border-collapse="collapse" is undefined when the table has columndistance or rowdistance set to a non-zero value and if the adjacent borders don’t have the same width and color.

	separate
	The borders are part of the cell and not shared with its neighbors.

	collapse
	The borders of neighboring cells overlap.

	columndistance (length, optional)
	Distance between two table columns.

	eval (XPath expression, optional)
	Evaluates the given XPath expression and discards its output.

	fontfamily (text, optional)
	Name of the font family for the table. If not given, the font face ‘text’ is used.

	leading (length, optional)
	The distance between two rows.

	padding (length, optional)
	The distance between the table border and the table contents.

	stretch (optional)
	If the table contents is narrow and stretch has the value no, the table only uses the minimal width. If the table contents is wider than the value width or stretch has the value max, the table’s width is the size given in the width attribute.

	max
	Stretch the table to its given width.

	no
	The table width is the minimum width depending on it’s contents.

	textformat (text, optional, since version 3.7.23)
	The text format for the table. Defaults to __leftaligned if no align attribute is given.

	vexcess (optional, since version 4.5.12)
	Set behaviour when cells stretch in vertical direction due to rowspans.

	stretch
	Stretch all table cells evenly (default).

	bottom
	Only stretch the last table cell.

	width (number or length, optional)
	The maximum width of the table (in grid cells or absolute values). Defaults to the available space.

Remarks

The table cells may contain Paragraphs, Images and other objects that are allowed in PlaceObject.

Example

<Record element="data">
 <PlaceObject>
 <Table stretch="max" padding="1pt">
 <Tablehead>
 <Tr background-color="gray">
 <Td colspan="3"/>
 <Td border-left="0.2pt" border-left-color="white" colspan="6" align="center">
 <Paragraph><Value>Total</Value></Paragraph></Td>
 <Td border-left="0.2pt" border-left-color="white"/>
 </Tr>
 <Tr background-color="gray">
 <Td/>
 <Td><Paragraph><Value>Clubs</Value></Paragraph></Td>
 <Td><Paragraph><Value>P</Value></Paragraph></Td>
 <Td align="center" border-left="0.2pt" border-left-color="white">
 <Paragraph><Value>W</Value></Paragraph>
 </Td>
 <Td align="center"><Paragraph><Value>D</Value></Paragraph></Td>
 <Td align="center"><Paragraph><Value>L</Value></Paragraph></Td>
 <Td align="center"><Paragraph><Value>F</Value></Paragraph></Td>
 <Td align="center"><Paragraph><Value>A</Value></Paragraph></Td>
 <Td align="center"><Paragraph><Value>+/-</Value></Paragraph></Td>
 <Td align="center" border-left="0.2pt" border-left-color="white">
 <Paragraph><Value>Pts</Value></Paragraph>
 </Td>
 </Tr>
 </Tablehead>
 <ForAll select="entry">
 <Tr>
 <Td align="left"><Paragraph><Value select="@pos"/></Paragraph></Td>
 <Td align="left"><Paragraph><Value select="@name"/></Paragraph></Td>
 <Td align="center"><Paragraph><Value select="@p"/></Paragraph></Td>
 <Td align="center" border-left="0.2pt" border-left-color="gray">
 <Paragraph><Value select="@tw"/></Paragraph>
 </Td>
 <Td align="center"><Paragraph><Value select="@td"/></Paragraph></Td>
 <Td align="center"><Paragraph><Value select="@tl"/></Paragraph></Td>
 <Td align="center"><Paragraph><Value select="@ta"/></Paragraph></Td>
 <Td align="center"><Paragraph><Value select="@tf"/></Paragraph></Td>
 <Td align="center"><Paragraph><Value select="@tpm"/></Paragraph></Td>
 <Td align="center" border-left="0.2pt" border-left-color="gray">
 <Paragraph><Value select="@pts"/></Paragraph>
 </Td>
 </Tr>
 </ForAll>
 </Table>
 </PlaceObject>
</Record>

Using the following data:

<data>
 <entry pos="1" name="Paris Saint-Germain FC" p="6"
 tw="5" td="0" tl="1" tf="14" ta="3" tpm="11" pts="15" />
 <entry pos="2" name="FC Porto" p="6"
 tw="4" td="1" tl="1" tf="10" ta="4" tpm="6" pts="13" />
 <entry pos="3" name="FC Dynamo Kyiv" p="6"
 tw="1" td="2" tl="3" tf="6" ta="10" tpm="-4" pts="5" />
 <entry pos="4" name="GNK Dinamo Zagreb" p="6"
 tw="0" td="1" tl="5" tf="1" ta="14" tpm="-13" pts="1" />
</data>

See also

The section tables.

TableNewPage

since version 3.3.13

Switches to a new page within the table.

Child elements

(none)

Parent elements

Case, ForAll, Loop, Otherwise, SetVariable, Table, Until, While

Attributes

(none)

Example

<PlaceObject>
 <Table stretch="max">
 <Tr>
 <Td><Paragraph><Value>One</Value></Paragraph></Td>
 </Tr>
 <TableNewPage/>
 <Tr>
 <Td><Paragraph><Value>Two</Value></Paragraph></Td>
 </Tr>
 </Table>
</PlaceObject>

The second row of the table is on the next page.

See also

Command <Table>, chapter about tables.

Tablefoot

Create a repeating table footer.

Child elements

Copy-of, ForAll, Switch, Tablerule, Tr

Parent elements

Table

Attributes

	page (optional)
	This command is only valid for the given pages. The default is to place the foot on all pages.

	all
	Place the footer on all pages.

	last
	Display the table footer only on the last page.

Example

See the description of Table

See also

Command <Table>, chapter about tables.

Tablehead

Create a repeating table head.

Child elements

Copy-of, ForAll, Switch, Tablerule, Tr

Parent elements

Case, ForAll, Loop, Otherwise, SetVariable, Table, Until, While

Attributes

	page (optional)
	The page the table head should appear on. Defaults to »all«

	first
	Only appear on the first page.

	all
	All pages. If »first« is defined, the tablehead appears on all pages but the first.

Remarks

The contents of the table head gets repeated on every page of a broken table.

Example

See the explanation of Table.

See also

Command <Table>, chapter about tables.

Tablerule

Insert a horizontal rule in a table

Child elements

(none)

Parent elements

Case, ForAll, Loop, Otherwise, SetVariable, Table, Tablefoot, Tablehead, Until, While

Attributes

	break-below (yes or no, optional, since version 3.5.2)
	Allow break below the table rule?

	class (text, optional)
	CSS class for this element.

	color (text, optional, CSS property: background-color)
	The color of the rule. Defaults to black. A color named “-” (without quotes) is a transparent “color”.

	id (text, optional)
	CSS id for this element.

	rulewidth (length, optional, CSS property: height)
	The width (thickness) of the rule. Defaults to 0.25pt.

	start (number, optional, CSS property: rule-start)
	The first column of the rule. Defaults to 1.

Example

<Tablerule rulewidth="1pt"/>
<Tr>
 <Td align="center">Position</Td>
 <Td align="center">Club</Td>
 <Td align="center">Points</Td>
 <Td align="center">Difference</Td>
</Tr>
<Tablerule rulewidth="0.6pt"/>

See also

Command <Table>, chapter about tables.

Td

Td wraps a table cell, just like HTML.

Child elements

Barcode, Bookmark, Box, Copy-of, ForAll, Frame, Groupcontents, Image, Loop, Overlay, Paragraph, Switch, Table, VSpace

Parent elements

Case, ForAll, Loop, Otherwise, SetVariable, Tr, Until, While

Attributes

	align (optional, CSS property: text-align)
	Horizontal alignment of the cell contents. Defaults to left.

	left
	The contents is left aligned (ragged right). This is the default.

	right
	The contents of the cell is right aligned.

	center
	The contents of the cell is aligned at the center, with ragged right and left margin.

	justify
	Justified text with straight margins.

	background-color (text, optional, CSS property: background-color)
	The name of the background color (if the cell should get a background).

	background-font-family (text, optional, CSS property: background-font-family, since version 2.3.7)
	Set the font family of the background text. Defaults to the table font.

	background-size (optional, CSS property: background-size, since version 2.3.7)
	Controls the size of the background text. Currently only 'contain' and 'auto' is allowed.

	contain
	Fill the height of the table cell.

	auto
	The background text is not scaled.

	background-text (optional, CSS property: background-text, since version 2.3.7)
	A text that should be placed in the background of the table cell.

	background-textcolor (optional, CSS property: background-textcolor, since version 2.3.7)
	The color of the text in the background (if any).

	background-transform (optional, CSS property: background-transform, since version 2.3.7)
	The transformation of the background text (if any). Currently supported: rotate(-40deg) (and other angles in the range 0 to -90).

	border-bottom (length, optional, CSS property: border-bottom-width)
	The width (thickness) of the bottom border. The border is inside the cell.

	border-bottom-color (text, optional, CSS property: border-bottom-color)
	The color of the bottom border.

	border-left (length, optional, CSS property: border-left-width)
	The width (thickness) of the left border. The border is inside the cell.

	border-left-color (text, optional, CSS property: border-left-color)
	The color of the left border.

	border-right (length, optional, CSS property: border-right-width)
	The width (thickness) of the right border. The border is inside the cell.

	border-right-color (text, optional, CSS property: border-right-color)
	The color of the left border.

	border-top (length, optional, CSS property: border-top-width)
	The width (thickness) of the top border. The border is inside the cell.

	border-top-color (text, optional, CSS property: border-top-color)
	The color of the top border.

	class (text, optional)
	The css class to be used for formatting the table cell.

	colspan (number, optional)
	The number of columns this cell spans. Defaults to 1.

	graphic (text, optional, since version 4.3.12)
	Draw the predefined MetaPost graphic around the table cell.

	id (text, optional)
	CSS id for this table cell.

	padding (length, optional, CSS property: padding)
	Shorthand for setting padding-top and the other values with this length.

	padding-bottom (length, optional, CSS property: padding-bottom)
	Set the inner distance (width between contents and the border) to the bottom edge.

	padding-left (length, optional, CSS property: padding-left)
	Set the inner distance (width between contents and the border) to the left edge.

	padding-right (length, optional, CSS property: padding-right)
	Set the inner distance (width between contents and the border) to the right edge.

	padding-top (length, optional, CSS property: padding-top)
	Set the inner distance (width between contents and the border) to the top edge.

	rotate (number, optional, since version 3.3.7)
	Rotate the contents of the table cell. Positive values return clockwise. This is experimental and currently only for text.

	rowspan (number, optional)
	The number of rows for this cell. Defaults to 1.

	valign (optional, CSS property: vertical-align)
	The vertical alignment of the cell.

	top
	The contents is aligned at the top edge of the cell.

	middle
	The contents is vertically centered.

	bottom
	The contents is aligned at the bottom edge of the cell.

Remarks

The child elements of the table cells are either block objects that start a new line or inline objects that are placed horizontally next to each other (from left to right) until the width of the table cell forces a line break.
 Block objects are Paragraph, Table and Box, inline objects are Barcode and Image.

Example

The following example places a background text behind the Td cell.

<DefineFontfamily name="td-background" fontsize="12" leading="12">
 <Regular fontface="TeXGyreHeros-Bold"/>
</DefineFontfamily>

<Record element="data">
 <PlaceObject>
 <Table stretch="max">
 <Columns>
 <Column width="5cm"/>
 </Columns>
 <Tr>
 <Td border-top="0.25pt" border-bottom="0.25pt"
 background-text="hello!"
 background-textcolor="goldenrod"
 background-transform="rotate(-30deg)"
 background-size="contain"
 background-font-family="td-background">
 <Paragraph><Value>A wonderful serenity has taken possession of my entire soul,
 like these sweet mornings of spring which I enjoy with my whole heart.</Value>
 </Paragraph>
 </Td>
 </Tr>
 </Table>
 </PlaceObject>
</Record>

See also

Command <Table>, chapter about tables.

Text

Create a text that can be broken across text containers or pages. To be used with Output

Child elements

Action, Bookmark, Copy-of, ForAll, Image, Loop, Ol, Paragraph, Switch, Ul, Value

Parent elements

Output

Attributes

	color (text, optional)
	The name of the color of the text.

	fontfamily (text, optional)
	The name of the font family. Defaults to text.

	textformat (text, optional)
	The name of the text format to be applied to the text. Defaults to text.

Example

<Pagetype name="page" test="true()">
 <Margin left="1cm" right="1cm" top="1cm" bottom="1cm" />
 <PositioningArea name="text">
 <PositioningFrame width="4" height="10" row="1" column="1" />
 <PositioningFrame width="4" height="10" row="1" column="6" />
 </PositioningArea>
</Pagetype>
<Record element="data">
 <Output area="text">
 <Text>
 <Paragraph>
 <Value select="string(.)" />
 </Paragraph>
 </Text>
 </Output>
</Record>

See also

The command <Text> in the basics chapter.

Textblock

Create a rectangular piece of text.

Child elements

Action, Bookmark, Copy-of, ForAll, Loop, Ol, Paragraph, Switch, Ul, Value

Parent elements

Clip, Frame, Overlay, PlaceObject, Position, Transformation

Attributes

	angle (number, optional)
	The angle (counter clockwise) that the text gets turned.

	color (text, optional)
	The name of the color of the text.

	columndistance (number or length, optional)
	Distance between two columns. Defaults to 3mm.

	columns (number, optional)
	Number of columns in the textblock. Do not use multi columns for any other purposes than simple text.

	fontfamily (text, optional)
	The name of the font family. Defaults to text.

	language (optional, since version 4.1.1)
	Set the language for hyphenation and rendering.

	minheight (number or length, optional, since version 2.3.28)
	The minimum height of the textblock, given as a length or number (grid cells).

	textformat (text, optional)
	The name of the text format to be applied to the text. Defaults to text.

	width (number, optional)
	Number of columns for the text. If not given, the surrounding element determines the width of the element.

Remarks

The textformat change the appearance of the paragraphs. They have to be previously defined by DefineTextformat.

Be careful when using multi column typesetting. This will only work with simple text, not with lists or so.

Example

<Record element="data">
 <PlaceObject>
 <Textblock width="10" angle="-20">
 <Paragraph>
 <Value>Bold slanted text</Value>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

See also

The command <Textblock> in the basics chapter.

Tr

Tablerow

Child elements

Copy-of, ForAll, Loop, Message, Switch, Td

Parent elements

Case, ForAll, Loop, Otherwise, SetVariable, Table, Tablefoot, Tablehead, Until, While

Attributes

	align (optional)
	Horizontal alignment of the table cells in this row.

	left
	The contents is left aligned (ragged right). This is the default.

	right
	The contents of the cell is right aligned.

	center
	The contents of the cell is aligned at the center, with ragged right and left margin.

	justify
	Justified text with straight margins.

	background-color (text, optional)
	Background color of each cell in this row.

	break-below (optional)
	Allow a table break between this row and the following.

	yes
	Allow a table break between this row and the following (default).

	no
	Disable a table break between this row and the following.

	data (XPath expression, optional)
	Data that can be accessed via $_last_tr_data in the tablefoot and tablehead.

	minheight (number or length, optional)
	Minimum row height in grid cells or length.

	sethead (optional)
	Use this line for future table heads.

	yes
	Use this line for future table heads.

	no
	No special treatment of this line (default).

	clear
	Delete head. Next pages will have no head until new one is set with 'yes'.

	top-distance (number or length, optional)
	The space above this row if it is not the first line on a new page / area.

	valign (optional)
	Vertical alignment of the table cells in this row.

	top
	The objects in this row are aligned at the top.

	middle
	The objects in this row are aligned at the middle axis.

	bottom
	The objects in this row are aligned at the bottom.

Example

<Tr minheight="8mm" background-color="yellow">
 <Td align="center"><Paragraph><Value>A</Value></Paragraph></Td>
 <Td><Paragraph><Value>B</Value></Paragraph></Td>
 <Td align="center"><Paragraph><Value>C</Value></Paragraph></Td>
 <Td align="center"><Paragraph><Value>D</Value></Paragraph></Td>
 <Td><Paragraph><Value>E</Value></Paragraph></Td>
</Tr>

See also

Command <Table>, chapter about tables.

Trace

since version 2.7.4

Set debugging switches

Child elements

(none)

Parent elements

Case, ForAll, Layout, Loop, Otherwise, Until, While

Attributes

	assignments (optional)
	Write assignments (SetVariable) to the log file.

	yes
	Verbose output in the protocol file.

	no
	Regular run (default).

	grid (optional)
	Draw the grid on the page.

	yes
	Show the grid.

	no
	Don’t show the grid (default).

	gridallocation (optional)
	Draw allocated cells with yellow and conflicts with red markers.

	yes
	Show grid allocation.

	no
	Don’t show the grid allocation (default).

	gridlocation (optional, since version 4.15.0)
	Location of the grid.

	foreground
	Draw the grid on top of all other objects.

	background
	Draw the grid below all other objects (default).

	hyphenation (optional)
	Draw little marks to show all hyphenation points.

	yes
	Show hyphenation points.

	no
	Don’t show any hyphenation points (default).

	kerning (optional)
	Draw little marks to show all kerning.

	yes
	Show kerning.

	no
	Don’t show any kerning (default).

	objects (optional)
	Draw rectangles around objects.

	yes
	Draw rectangles

	no
	No rectangles drawn around objects (default).

	textformat (optional)
	Show textformt as a tooltip in the PDF

	yes
	Show textformat

	no
	Don’t show textformat (default)

	verbose (optional)
	Verbose output in the protocol file.

	yes
	Verbose output in the protocol file.

	no
	Regular run (default).

Example

<Trace textformat="yes"/>

See also

The section Troubleshooting / Debugging.

Transformation

Manipulate an object’s appearance by applying a matrix. See the PDF reference 4.2.2 Common Transformations and following.

Child elements

Barcode, Box, Circle, Frame, Image, Rule, Table, Textblock, Transformation

Parent elements

Case, Clip, ForAll, Frame, Loop, Otherwise, Overlay, PlaceObject, Position, Transformation, Until, While

Attributes

	matrix (text, optional)
	The transformation matrix for the object. Expected is a space separated string of six values.

	origin-x (text, optional)
	The origin for matrix transformation. Must be left, center or right or a number from 0 to 100 (0 = left, 100 = right).

	origin-y (text, optional)
	The vertical origin for the matrix transformation. Must be top, center or bottom or a number from 0 to 100 (0 = top, 100 = bottom).

Example

<Record element="data">
 <PlaceObject>
 <Transformation matrix="1 0 0 1 72 -72">
 <Transformation matrix="1 0 0 0.5 0 0" origin-x="100">
 <Transformation matrix="1 1 -1 1 0 0">
 <Image file="_samplea.pdf" maxwidth="4" maxheight="4"/>
 </Transformation>
 </Transformation>
 </Transformation>
 </PlaceObject>
</Record>

See also

The section about <Transformation> in the basics chapter.

U

Underline text.

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

A, B, Case, Color, Fontface, ForAll, I, Li, Loop, NoBreak, Otherwise, Paragraph, Span, U, URL, Until, While

Attributes

	class (text, optional)
	CSS class for this element.

	dashed (optional, CSS property: border-style, since version 2.3.61)
	Use a dashed rule instead of a solid rule.

	yes
	Draw a dashed rule.

	no
	Draw a solid rule.

	id (text, optional)
	CSS id for this element.

Remarks

Currently doesn’t work with margin protrusion.

Example

<Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <U><Value>Underlined text</Value></U>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

See also

The section text formatting as well as the commands and <I>.

Ul

Create an unordered list, just like in HTML

Child elements

ForAll, Li

Parent elements

Text, Textblock

Attributes

	fontfamily (text, optional, since version 4.3.1)
	The name of the font family for the paragraph. The default is »text« (lowercase t).

Example

<PlaceObject>
 <Textblock>

 <Value>First item</Value>
 <Value>Second item</Value>
 <Value>Third item</Value>

 </Textblock>
</PlaceObject>

See also

The section Enumeration lists as well as the commands and .

Until

Create a loop. All child elements are executed repeatedly until the given condition is true.

Child elements

A, Action, AddSearchpath, AttachFile, Attribute, B, Barcode, Bookmark, Box, Br, ClearPage, Clip, Color, Column, Columns, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, Element, Fontface, ForAll, Frame, Group, HSpace, Hyphenation, I, Image, Include, Initial, InsertPages, Layout, Li, LoadDataset, LoadFontfile, Loop, Message, NextFrame, NextRow, NoBreak, Options, Output, Overlay, Pageformat, Pagetype, Paragraph, PlaceObject, PositioningArea, PositioningFrame, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Span, Sub, Sup, Switch, Table, TableNewPage, Tablehead, Tablerule, Td, Tr, Trace, Transformation, U, Until, VSpace, Value, While

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	test (XPath expression)
	Every time after the the loop is executed, the condition is evaluated. If it is true, the loop exits.

Example

<Record element="data">
 <SetVariable variable="i" select="0"/>
 <Until test="$i = 4">
 <Message select="concat('$i is: ', $i)"/>
 <SetVariable variable="i" select="$i + 1"/>
 </Until>
</Record>

Gives the following output (in the protocol file)

Message: "$i is: 0"
Message: "$i is: 1"
Message: "$i is: 2"
Message: "$i is: 3"

See also

The section loops in chapter programming.

URL

enables a better breaking of URLs.

Child elements

A, Action, B, Barcode, Br, Clip, Color, Fontface, ForAll, Frame, HSpace, I, Image, Loop, NoBreak, Span, Sub, Sup, Switch, U, URL, Value

Parent elements

A, B, Color, Fontface, I, Li, NoBreak, Paragraph, Span, U, URL

Attributes

(none)

Example

<PlaceObject>
 <Textblock>
 <Paragraph>
 <Value>URL: </Value>
 <URL><Value>https://www.speedata.de/publisher</Value></URL>
 </Paragraph>
 </Textblock>
</PlaceObject>

See also

The section about Break URLs in chapter about text formatting.

Value

Contains a text value that is passed to the surrounding element.

Child elements

(none)

Parent elements

A, AtPageCreation, AtPageShipout, B, Case, Color, Contents, Element, Fontface, ForAll, Function, I, Image, Initial, Li, Loop, Message, NoBreak, Otherwise, Paragraph, Record, SavePages, SetVariable, Span, Sub, Sup, Text, Textblock, U, URL, Until, While

Attributes

	select (XPath expression, optional)
	Value to be passed to the outer element.

Remarks

The value can be passed to the outer element either as an XPath expression or as the contents of this element.

Containing Br-tags will be interpreted as newlines.

Example

<Record element="data">
 <PlaceObject>
 <Textblock>
 <Paragraph>
 <Value select="@name"/><Value>, symbol=</Value><Value select="@symbol"/>
 </Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

VSpace

Create a vertically stretching space. The space has a minimum height of 0 but is able to stretch up to infinity. Useful in table cells.

Child elements

(none)

Parent elements

Case, ForAll, Loop, Otherwise, Td, Until, While

Attributes

	height (length, optional, since version 4.7.12)
	Optional height of the space (a length).

	minheight (length, optional, since version 4.7.12)
	The (optional) minimum height of the inserted space.

Example

<Td valign="bottom">
 <VSpace/>
 <!-- vertically centered image -->
 <Image width="3" file="article.pdf"/>
 <VSpace/>
 <Paragraph><Value>Some text at the bottom of the cell</Value></Paragraph>
</Td>

See also

The section table cells and rows in chapter tables.

While

Create a loop. All child elements are executed as long as the condition in the test attribute evaluates to true.

Child elements

A, Action, AddSearchpath, AttachFile, Attribute, B, Barcode, Bookmark, Box, Br, ClearPage, Clip, Color, Column, Columns, Copy-of, DefineColor, DefineFontalias, DefineFontfamily, DefineMatter, DefineTextformat, Element, Fontface, ForAll, Frame, Group, HSpace, Hyphenation, I, Image, Include, Initial, InsertPages, Layout, Li, LoadDataset, LoadFontfile, Loop, Message, NextFrame, NextRow, NoBreak, Options, Output, Overlay, Pageformat, Pagetype, Paragraph, PlaceObject, PositioningArea, PositioningFrame, ProcessNode, SaveDataset, SavePages, SetGrid, SetVariable, SortSequence, Span, Sub, Sup, Switch, Table, TableNewPage, Tablehead, Tablerule, Td, Tr, Trace, Transformation, U, Until, VSpace, Value, While

Parent elements

AtPageCreation, AtPageShipout, Case, Contents, ForAll, Layout, Loop, Otherwise, Record, SavePages, Until, While

Attributes

	test (XPath expression)
	Every time before the the loop is executed, this condition must evaluate to true. See the command Until for a loop with an exit test.

Example

The following example creates a textblock with three times the contents 'Text Text Text '.

<Record element="data">
 <SetVariable variable="counter" select="1"/>
 <SetVariable variable="text" select="''"/>
 <While test=" $counter <= 3 "> <!-- less or equal -->
 <SetVariable variable="counter" select=" $counter + 1"/>
 <SetVariable variable="text">
 <Value select="$text"/>
 <Value select="'Text '"/>
 </SetVariable>
 </While>
 <PlaceObject>
 <Textblock>
 <Paragraph><Value select="$text"/></Paragraph>
 </Textblock>
 </PlaceObject>
</Record>

See also

The section loops in chapter programming.

EPUB/images/21-overlay.png

EPUB/images/oxygen-schema-doctypeassociation-1.png
[JON] Document type

Name: speedata Publisher (en) Priority: Normal
Description:
Storage: © Internal External =

Read more about Document Type sharing and how the storage mode affects it

Initial edit mode: Editor specific

AGdodeilondlisay Schema Classpath Author Templates Catalogs Transformation Validation Extensions

Namespace Root local name File name Public ID Attribute

Java class

g Cancel (MOKIND

EPUB/images/ref-overlay.png

EPUB/images/14-fonts.png
A wonderful serenity has taken possession of
my entire soul, like these sweet mornings.

EPUB/images/kreismitfarbe.png

EPUB/images/18-clip-yes.png

EPUB/images/taschenuhr.png
Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore
et dolore magna aliqua. Ut enim ad minim veniam, ||
quis nostrud exercitation ullamco laboris nisi ut W
aliquip ex ea commodo consequat. Duis aute irure 4=
dolor in reprehenderit in voluptate velit esse cil-
lum dolore eu fugiat nulla pariatur. Excepteur
sint occaecat cupidatat non proident, sunt /£,
in culpa qui officia deserunt mollit anim id /
est laborum.

Lorem ipsum dolor sit amet, consectetur
adipisicing elit, sed do eiusmod tem- |
por incididunt ut labore et dolore magna \ \
aliqua. Ut enim ad minim veniam, quis nos- \
trud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cu-
pidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

EPUB/images/08-raster2.png

EPUB/images/outputobjects-clip.png

EPUB/images/textblock-paragraph.png
green text
this text is in blue (given by Textblock)

EPUB/images/oxygen-schema-doctypeassociation.png
| Qfype filter text

Preferences

+] 1 (P Document Type Association

Global
> Appearance

Discover more frameworks by using add-ons update sites

Enabled Document type Storage Priority
Application Layout OASIS XML Catalog External Low
Add-ons OCF External Low
Project Level Settings ODF 1.2 External Low
» Document Type Association 0OXML External Low
Docurr.1ent Templates OPE 2.0 External Low
Enfodmg OPF 3.0 External Low
> Editor . OPF 3.1 External Low
CSS Validator Oxygen Extensions External Low
> XML Oxygen Report External Low
> DITA Publishing Template External Low
Markdown RDF External Low
> Data Sources Relax NG External Low
> SYN SQF External Low
> Diff . SVG External Low
Arch.lve Saxon External Low
> Plugins Schematron External Low
External Tools Schematron 1.5 (deprecated) External Low
Menu Shortcut Keys StratML ISO Partl External Low
File Types StratML Part 1 (Strategic Plan) External Low
Open/Find Resource StratML Part 2 (Perfomance Plans and Reports) External Low
Custom Editor Variables TEIJTEI External Low
» Network Connection Settings TEI ODD External Low
XML Structure Outline TEI P§ External Low
Views WSDL External Low
Messages Widgets External Low
XHTML External Low
XLIFF 1.2 External Low
- RVINT TN NN [NP FE—
Disable all Edit Duplicate Extend Delete
Enable DTD /XML Schema processing in document type detection
Only for local DTDs/XML Schemas
Enable DTD/XML Schema caching
O Global Options) Project Options (@) Restore Defaults
2 Apply Cancel -

EPUB/images/18-maxheight.png

EPUB/images/pagetree.png

EPUB/images/ch-tab-balanceno.png
Row 20

EPUB/images/nextpage.png

EPUB/images/07-savepages.png
Gummissrchon

Gummisichon

EPUB/images/markdownsimple.png
A title
* one
» anotherone
« three

EPUB/images/drehungaspectratio.png

EPUB/images/eagle-transform.png
VO
B
|

B
r,. ﬂ,ﬂ__,

\

EPUB/images/singlepasstoc.png
1 The first chapter.
2 The second chaptercccceeevennes 10
3 The last chapterccovveuiiciiecnnnns 13

EPUB/images/olul.png
1. One
2. Two
* One
* Two

EPUB/images/stichwortverzeichnis.png
E
Elevator

G
Garage
Giraffe
Greeting

W =N

EPUB/images/ref-speedata-publisher-qrcode.png

EPUB/images/tab-wechselnde-zeilenfarben.png
Zeile 1
Zeile 2
Zeile 3
Zeile 4
Zeile 5

EPUB/images/outlinehelloworld.png
Hello nice world

EPUB/nav.xhtml

 Table of Contents

 		
 speedata Publisher: The manual

 		
 Introduction and basics

 		
 In depth descriptions

 		
 Reference

 		
 Introduction

 		
 What is it all for?

 		
 Beautiful and fully automatic

 		
 Where can I get the software and how is it run?

 		
 Examples

 		
 Hello, world!

 		
 The “Hello World!” example explained

 		
 Basics

 		
 How to write the layout

 		
 Structure of the data file and the layout rules

 		
 Outputting objects

 		
 Grid

 		
 Areas on the page (PositioningArea)

 		
 File organization

 		
 Hyphenation / language settings

 		
 Using fonts

 		
 Text formats

 		
 Text formatting

 		
 Colors

 		
 Programming

 		
 Variables

 		
 Copy of

 		
 If-then-else

 		
 Case distinctions

 		
 Loops

 		
 Functions

 		
 Data Structures

 		
 Image inclusion

 		
 Width and height of the images

 		
 Maximum height and width, minimum height and width

 		
 Rotating images

 		
 Location of the image files

 		
 Image not found?

 		
 Special features for PDF files

 		
 External Conversion Tools

 		
 Images from textual descriptions

 		
 MetaPost Images

 		
 Image size and resolution

 		
 Other parameters

 		
 Tables

 		
 Basic structure of a table

 		
 Table cells and table rows, lines in tables

 		
 Text formats in tables

 		
 Colspan and Rowspan

 		
 Specifying the column widths

 		
 Table wraps

 		
 Headers and footers (static)

 		
 Headers and footers (dynamic)

 		
 Headers and footers with running sum

 		
 Assembling tables

 		
 Alternating line colors

 		
 Background in table rows

 		
 Clearing columns

 		
 Page change in tables

 		
 Publisher Webservice API

 		
 Authentication

 		
 Overview of the REST methods

 		
 Status codes

 		
 Library for the programming language Go

 		
 Advanced topics

 		
 Bookmarks

 		
 Creation of XML structures

 		
 Print output / crop marks

 		
 Using CSS with the speedata Publisher

 		
 Groups (virtual objects)

 		
 Virtual pages

 		
 Markdown

 		
 Rotation of contents

 		
 Sorting data

 		
 Wrap around images

 		
 Page types

 		
 Attach files to the PDF

 		
 Starting the Publisher via the Hotfolder

 		
 Lua-Filter / pre-processing

 		
 Schema validation

 		
 Quality assurance and PDF comparison

 		
 Troubleshooting / Debugging

 		
 Server mode (REST API)

 		
 Control of the layout when calling the Publisher

 		
 Create and use images with MetaPost

 		
 Cookbook

 		
 Thumb index

 		
 Embed multipage PDF files

 		
 Layout optimization using groups

 		
 Imitate bulleted lists

 		
 Automatically generated directories

 		
 Create table of contents in one go

 		
 Page numbers: Page x of y

 		
 Installation instructions

 		
 File name in the Publisher

 		
 speedata Publisher defaults

 		
 Fonts

 		
 Textformats

 		
 Page size and margin

 		
 Colors

 		
 Matters

 		
 Running the speedata publisher on the command line

 		
 Description of the commands

 		
 Description of the commandline parameters

 		
 How to configure the speedata publisher

 		
 The file publisher.cfg

 		
 Command line parameters

 		
 Options given in the layout file

 		
 Lenghts and units

 		
 XPath and Layout Functions (old XPath module)

 		
 XPath expressions

 		
 The following XPath expressions are handled by the software:

 		
 The following XPath functions are known to the system:

 		
 sd layout functions

 		
 XPath functions

 		
 XPath and Layout Functions (new XPath module)

 		
 What is XPath and why are there two different implementations?

 		
 XPath expressions

 		
 The following XPath expressions are handled by the software:

 		
 The following XPath functions are known to the system:

 		
 sd layout functions

 		
 XPath functions

 		
 Internal variables

 		
 Associate XML editor with schema

 		
 Visual Studio Code

 		
 OxygenXML

 		
 speedata Publisher Pro plan

 		
 How do I get the Pro plan?

 		
 Checking the version

 		
 Changelog

 		
 4.18

 		
 4.17

 		
 4.16

 		
 4.15

 		
 4.14

 		
 4.13

 		
 4.12

 		
 4.11

 		
 4.10

 		
 4.9

 		
 4.8

 		
 4.7

 		
 4.6

 		
 4.5

 		
 4.4

 		
 4.3

 		
 4.2

 		
 4.1

 		
 4.0

 		
 3.9

 		
 3.8

 		
 3.7

 		
 3.6

 		
 3.5

 		
 3.4

 		
 3.3

 		
 3.2

 		
 3.1

 		
 3.0

 		
 2.9

 		
 2.8

 		
 2.7

 		
 2.6

 		
 2.5

 		
 2.4

 		
 2.3

 		
 2.2

 		
 Glossary

 		
 Compatibility with other software

 		
 Operating systems

 		
 External software

 		
 File formats, output

 		
 Known problems

 		
 Compatibility with older versions of the speedata Publisher

 		
 Exchanging layout files between different installations

 		
 Command reference

 		
 Attribute index

 		
 A

 		
 Action

 		
 AddSearchpath

 		
 AtPageCreation

 		
 AtPageShipout

 		
 AttachFile

 		
 Attribute

 		
 B

 		
 Barcode

 		
 Bold

 		
 BoldItalic

 		
 Bookmark

 		
 Box

 		
 Br

 		
 Case

 		
 Circle

 		
 ClearPage

 		
 Clip

 		
 Color

 		
 Column

 		
 Columns

 		
 Compatibility

 		
 Contents

 		
 Copy-of

 		
 DefineColor

 		
 DefineColorprofile

 		
 DefineFontalias

 		
 DefineFontfamily

 		
 DefineGraphic

 		
 DefineMatter

 		
 DefineTextformat

 		
 Element

 		
 Fallback

 		
 Fontface

 		
 ForAll

 		
 Frame

 		
 Function

 		
 Grid

 		
 Group

 		
 Groupcontents

 		
 HSpace

 		
 Hyphenation

 		
 I

 		
 Image

 		
 Include

 		
 Initial

 		
 InsertPages

 		
 Italic

 		
 Layout

 		
 Li

 		
 LoadDataset

 		
 LoadFontfile

 		
 Loop

 		
 Makeindex

 		
 Margin

 		
 Mark

 		
 Message

 		
 NextFrame

 		
 NextRow

 		
 NoBreak

 		
 Ol

 		
 Options

 		
 Otherwise

 		
 Output

 		
 Overlay

 		
 Pageformat

 		
 Pagetype

 		
 Param

 		
 Paragraph

 		
 PDFOptions

 		
 PlaceObject

 		
 Position

 		
 PositioningArea

 		
 PositioningFrame

 		
 ProcessNode

 		
 Record

 		
 Regular

 		
 Rule

 		
 SaveDataset

 		
 SavePages

 		
 SetGrid

 		
 SetVariable

 		
 SortSequence

 		
 Stylesheet

 		
 Span

 		
 Sub

 		
 Sup

 		
 Switch

 		
 Table

 		
 TableNewPage

 		
 Tablefoot

 		
 Tablehead

 		
 Tablerule

 		
 Td

 		
 Text

 		
 Textblock

 		
 Tr

 		
 Trace

 		
 Transformation

 		
 U

 		
 Ul

 		
 Until

 		
 URL

 		
 Value

 		
 VSpace

 		
 While

EPUB/images/textoverflow.png
usmod tempor incididunt

Lorem ipsum dolor sit t labore et dolore magna
amet, consectetur adip- olore eu fugiat nulla pari- aliqua. Ut enim ad minim
isicing elit, sed do eius- atur. Excepteur sint oc- veniam, quis nostrud exer-
mod tempor incididunt ut caecat cupidatat non proid- citation ullamco laboris nisi
labore et dolore magna ali- ent, sunt in culpa qui offi- ut aliquip ex ea commodo
qua. Ut enim ad minim ve- cia deserunt mollit anim id consequat. Duis aute irure
niam, quis nostrud exercit- est laborum.Lorem ipsum dolor in reprehenderit in
ation ullamco laboris nisi dolor sit amet, consectetur voluptate velit esse cillum
ut aliquip ex ea commodo adipisicing elit, sed do ei- dolore eu fugiat nulla pari-
consequat. Duis aute irure atur. Excepteur sint oc-
dolor in reprehenderit in caecat cupidatat non proid-
voluptate velit esse cillum ent, sunt in culpa qui offi-

cia deserunt mollit anim id

EPUB/images/attachfile.png
= G LS U ol

Name v~ Description Modified Size

‘ ocean.pdf A nice view 04.07.1..13:18:35 68,58 K

EPUB/images/tab-inline-block.png
Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cu-
pidatat non proident, sunt in culpa qui officia deserunt
miollit anim id est labonum.

EPUB/images/fusszeileseitentyp.png
Firmenname

EPUB/images/olulwithtables.png
1. Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat
non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna
aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute
irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat

EPUB/images/ref-greenbox.png

EPUB/images/mp-first.png

EPUB/images/rtl-text.png
KPSt e Ay 15l
ST P PR NN RV
ol O e s L s Dae |sn

.9[&-}/‘ e L,a:u NM

EPUB/images/gestricheltelinie.png

EPUB/images/29-liste.png
<?xml version="1.0" encoding="UTF-8"7>

vi<Layout
xmlns="urn:speedata.de:2009/publisher/en"

xmlns:sd="urn:speedata:2009/publisher/functions/en">

4

</Lay

Compatibility
DefineColor
DefineFontfamily
DefineTextformat
Hyphenation
Include
LoadFontfile

Set compatibility for older layouts

EPUB/images/xmltopdf.png

EPUB/images/attachfile-zugferd.png
S ld TR, W fed N

Name ~ Description Modified Size
.ZUGFeRD-invoice.me Electronic invoice 24.07.1...15:41:45 788K

EPUB/images/24-einfachegruppe.png

EPUB/images/nobreak1.png
wonderful serenity has taken

possession
f my entire soul, like these sweet mornings... |

EPUB/images/umfliessenvonbildern.png
A LU L U U UM UMM A LT LA LA U LU T AL

UL PMUMAMAL L 1 MU U PRI MM UL 1 VL LU AL L

R e T T L T e i T e T e e e T R R e 2

MU LT LA UL 2L UL 2 U UM MAA AL 41 LI A A A U

ML U UL AN L A MU ML AU A MMM UL

P MM L A UL TIA VAL LA AL AL U M L e

AUt L U A UM UL A LT AN LU T U LALLM T AL 1 A

U U MU UL 1 UV LU ML LU T A UA A LU AT LA M S MAA AL AL 1 U

UL UM UM U LU LT UL UL LA 2L T UL 20 LU M MAA AL 23 LA M T LAV U T UL Ul T

MMM LN UM UAMAT LU A MMM ULIMAA AL A MU T A UL T VAL LA A L

M g e R e A e

AU L U A UM UMM A LT LA LML U “LUA U AL

UL P MAMAMALLE 1 MU U PRI A ML UL 1T AV LU AL L

AL P UL LA M MM ST 1 AT UL T et

MU U U UL UL 2L UL 21 LU UM A AL 44 L A LA LA Ut

ML U UL AN LA LU MA LT UM IUAL e I MMM UL U

A AT L A UL T ML LA AL AT U M U A

EPUB/images/14-smcp.png
TEXT MIT ECHTEN KAPITALCHEN

EPUB/images/eagle-frame.png

EPUB/images/29-doczuordnung2.png
{ WG) Document type

Name: speedata Publisher (en) Priority: = Normal
Description: |
Storage: © Internal External

Read more about Document Type sharing and how the storage mode affects it
Initial edit mode: Editor specific

Association rules m Classpath Author Templates Catalogs Transformation Validation Extensions

ae adefined-here is used only if there is no schema detected in the XML file.
RNG Schema + Schematron

Schema type:
Schema URI: file:/usr/share/speedata-publisher/schema/layoutschema-en.rng ¥ e B

7 Cancel

EPUB/images/03-dyntabellenkopf.png
Abschnitt 1 Abschnitt 2
Zeile 1 Zeile 3
Zeile 2 Zeile 4
Abschnitt 2 Zeile 5
Zeile 1 Zeile 6
Zeile 2 Zeile 7
Abschnitt 2

Zeile 8

EPUB/images/zitronengruen.png

EPUB/images/hb-bengali-correct.png

EPUB/images/formel1.png
——
OO~

SIS

EPUB/images/vscode-xml-catalog.png
i
Jo
5%
>

Settings — publisher (Workspace)
£ Settings O O O x

xml.catalogs 1 Setting Found =x

User Workspace publisher Folder

v Extensions (1)

Xml: Catalogs
XML configurat... (1)

Array of XML Catalogs.

/Users/patrick/work/software/publisher/schema/catalog-schema-en.xml

EPUB/images/29-autocomplete1.png
I e

<Place0b]ect row—"lcm column="1cm" allocate="no">

® Table Create a rectangular piece of text.
© Textblock

o Transformation or="TIgntgray™7>

"no"'s
or="lightgray"/>

o™
<Box—Wrath="4"heignt="Z DacKkgrou or="lightgray"/>
</PlaceOhiects

EPUB/images/ref-initial-de.png
E s war einmal ein Konig
und eine Konigin, die hat-
ten keine Kinder, wiinschten
sich aber tagtaglich ein Kind.

EPUB/images/08-raster4.png
el A ol 27
ell 1/2 Cell 2/2

EPUB/images/speedatagruen.png
Ink Manager

MName Type Density Sequence
. - Process Magenta MNormal 0,760 2
. - Process Yellow MNormal 0,160 3
K Il Frocess Black Normal 1,700 4
) - speedatagreen Mormal 0,641 5
Process Cyan
Type: MNormal

Meutral Density: | 0.61

Trapping Seqguence: |1

€

Ink Alias: [No Alias]

| Convert All Spots to Process

EPUB/images/14-osf.png
Text mit Medidvalziffern: 0123456789

EPUB/images/21-bgtext.png
Lorem ipsum dolor sit amet, consectetur adi-
pisicing elit, sed do eiusmod tempor incididunt
ut labore et dolore magna aliqua. Ut enim

ad minim veniam, quis nostrud exercitation
ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehen-
derit in voluptate velit esse cillum dolore eu
fugiat nulla pariatur. Excepteur sint occaecat
cupidatat non proident, suntin culpa qui officia
deserunt mollit anim id est laborum.

EPUB/images/schnittmarken.png

EPUB/images/13-dothyphen.png
A wonderful serenity
has taken possession
of my entire soul, like
these sweet morne
ings of spring which |
enjoy with my whole
heart. | am alone, and
feel the charm of exe
istence in this spot,
which was created for
the bliss of souls like
mine.

EPUB/images/ebook-cover-en.png
speedata Publisher

The manual

Patrick Gundlach

EPUB/images/18-fnf.png
||
File not found

EPUB/images/22-runningsum.png
Wertvon $_last_tr_data: 0
i=1
i=2

I
w

PR - N NS N

@ = o

Wertvon $_last_tr_data: 91
i=14

PUBEWN2CO®NO® O

EPUB/images/textmitueberschrift.png
A Title

Lorem ipsum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cu-
pidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

EPUB/images/tab-min-max.png
he The quick brown fox
uick

brown

0X

EPUB/images/marginprotrusion.png
A wonderful serenity has ta-
ken possession of my ent-
ire soul, like these sweet

mornings of spring which I

enjoy with my whole heart.

[am alone, and feel the

charm of existence in this
spot, which was created for

the bliss of souls like mine. |

A wonderful serenity has ta-
ken possession of my ent-
ire soul, like these sweet
mornings of spring which I
enjoy with my whole heart.
I am alone, and feel the
charm of existence in this
spot, which was created for
the bliss of souls like mine. I

am so happy, my dear friend,
so absorbed in the exquisite

sense of mere tranquil exis-
tence, that I neglect my ta-
lents.

am so happy, my dear friend,
so absorbed in the exquisite
sense of mere tranquil exis-
tence, that I neglect my ta-
lents.

EPUB/images/25-griffmarken.jpg
2
8
S

BUREEY HENNSRSEERLR SIS
2aBBRIBIS NAEEIATISSEIRY SRIR0BENIIRANEAIILEE

SR2RLBIATALEN 2BBLESEZIBBI222F A2 ITAFYVIFIBLERSIAY

13

58

3

0. bil

\ 1,

13 . | 159

6937

692

.29

ayer-1. . .22

760

612

448

6938

7870

e8s .78

17 670

er24 | 219
: 7007 6852
0 . 3173023
891607 90

580

791

0 66

. 49

431

430

9

5

6

4

e

] Miinchen (0 89

N u. Franke Torsten .

........... 56
...... 5
76
2
70
03
HE
51
“33%
897758
085724
357164
257275
..... 399647
g . 424084
45 34 66 66
17 2285,017590074 03
4 63708304
..... 44383992 IX
VI3 ook . 6519270
- Toma Solothurner-84 . 151428 Rubriken
= Tomislav Gilm-52. . . 759 66 46
Bar Restaurant 20802180
Kardinal-Faulhaber-11 e Fax 20 80 21 81
hﬁmxmnm Manchen 45 4778 90
Barius Moune Gottfried-Bohm-Ring 30. . . 650178 l !
Abdelkader 017735607 18 |
Axel (Pul) Franziskus-Festing-8 . . 79348 28 { |
- Francoise (Pul) Franziskus-Festing-8 . 7934892
- Rasa (Gril) Josef-Briick-Weg 3 . . 01725629357
Barka Karin Tsingtauer-55. . 4391586
Barkan Vassili Hellenstein-6 - 89669339
Konstantin Kreiller-37 32604696
Barkawi Lennard Speyerer-14 18913004 A
Management Consultants . 749826-0

Barkawi XD
GmbH & Co. KG Unternehmensberatung | |
Balerbrunner-35
Barke Albrecht Karl-Marx-Ring 94 .
Barkemeyer Inge Haar Rechner-25 .

Barkenstein GmbH (Gri) 18
Ricarda-Huch-8B
Barker Ronald Dr. Zielstatt-105. - ggg

- Stephan Nigel Hofanger-45.
Barkey Andreas und Jutta Soliner-378 .
Barkhahn Christian Riesenfeld-86A
- Paul Riesenfeld-86A

Barkhausen Christine

Barkhoff R. u. U. Kt

Barkhoff u. Reimann

Brabanter-4

S2BR8E

Barkhoff Ulrike Ch. Unternehmensse: g%

78
Barkic Hans Ivica Kirche: 20
- Katarina Kirc i g;l

3114352
35999900 | W

30763791 N

gt far eine sehr gleichmaBige

tatmosphare wirkt angenehm und

Mit SPITTLER Click-In System

1geben!

EPUB/images/ref-ean13-supertex.png
242002751816

EPUB/images/vscode-sample-layout.png
XX layout.xml — publisher (Workspace) :

Q S layout.xml ® ¢ % O

1 <Layout xmlns="urn:speedata.de:2009/publisher/en"
p 2 xmlns:sd="urn:speedata:2009/publisher/functions/en">

3

4 <Record element="data"> N
» ° ' <o

6 </Record / PlaceObject Outputs a rectangular object (image, table, box,
. 7 </Layout> barcode or textblock).

Source: layoutschema-en.xsd

EPUB/images/kreismitmittelpunkt.png

EPUB/images/18-clip-no.png
5

)

AL

)

EPUB/images/13-autobahn.png
Autobahn

EPUB/images/32-hellogreenworld.png
hello green world

EPUB/images/08-raster3.png

EPUB/images/mp-dotted.png
||||| o000 OGOGOOGOOONOSFS

EPUB/images/ch-tab-tables-balanced.png
e

I~ ve

v

wa 1

R

EPUB/images/13-marginprotrusion.png
Also schon, Guido Heffels,
nachfolgend meine Textemp-
fehlung fiir das Blindtext-
buch. Sie mogen denken, aus

welchem Anlass es unbedingt

eine solche poesiealbumhafte

Antiquitdt sein muss, und ge-
nau das sollen Sie ja auch.

EPUB/images/textauszeichnungen.png
Text, , SUP underline green link to the homepage right margin.

EPUB/images/tablestretchmaxno.png
Row 1/ Column 1

Row 1/ Column 2

Row 2/ Column 1

Row 2/ Column 2

Row 1/ Column 1

Row 1/ Column 2

Row 2/ Column 1

Row 2/ Column 2

EPUB/images/formel2.png
x’zaxac+c><y+e

y =bxz+dxy+f

EPUB/images/beispiele.png
T v
e iy seowrre. . Chicago: The Global City

the old tangled districts o give way
t0 green parks in the western sub-
urbs

Cotting there 3 2 Controversial Student

In general, if you are arriving by -

Lt i Loan Agency

e, tis almos always btierto

use publc anspor - buses o the

et system - o your hatel o i

destination, The afpor information e in Lisbon. Thse rams, whichun-

Gesk at Lisbon airport can provide Ul the ate-1980% ran all hrough

You with l the required nforma. Lisbon were nanufacured between

Yon, Taxi drvers a the

t Usbon e nfarous o ther

hanesty and unvelabityand f iy (dating rom the 7 century) e

can 11p you of, they il I you do _ginningin Graga then down o the
Aifama and 1o the Baxa then p
Uhough Chado o BarTo Ao ang

N Jrsey senate examines age

tination, avoid using a taxi unless.
there is no other option. If your final e
ous and interesting sites including

oy e New US President

Theip a iy,
Oowntown (8aia) e 0 reluse dostinations. I you 1 afords many beauu i ; ALGore endorses Obama for S President

are ot cartying too much luggage thecty. And, lthough th ar can
and T ot e 1 he g, youare sometnes e overrun with taurts,
boter off smply eting busarthe you wil el gt flvour of
ot iy cener e ocais, a5 many Ushoetas con
mute daily on these Nstorial s,

The Lisbon Experience: capital of Tamas ol e e
e oty i e it o2 Tk A
The capital of Portugal, Lisbon has experienced a renais- o

sance in recent years, with a contemporary culture that is
alive and thriving and making its mark in today's Europe.
Perched on the edge of the Atlantic Ocean, Lisbon is one
of the rare Western European cities that faces the ocean
and uses water as an element that defines the city. Lis-
bon enchants travelers with its white-bleached limestone
buildings, intimate alleyways,and an easy-going charm that
makes it a popular year-round destination. Lisbon enjoys a
‘warm climate with mild winters and very warm summers.

Some Headline

et e ot of 0 T

1- samplejournal sample journal -2

Budget 2016

Group Articl Article Selling goal Budget
number name in USD

i
3¢

A Gnat alighted on one of the horns of a Bull, and remained Alpine Men 1022 Florence 102 000~
sitting there for a considerable time..When it had rested suffi- 1026 Sunfit 180 70 560,—
ciently and was about to fly away, it said to the Bull, “Do you 1148 Outlook 140 90 400~
mind ifIgo now?” The Bull merely raised his eyes and remarked, Women 133 Falcon 310 120 000,—
without interest, “It’s all one to me; I didn't notice when you 1356 Fred Fox 180 100 000~
came, and [shan’t Know when you go awa’ 48 Orion 50 76 000~
gt Y] Nordic Men 987 Kevlar 10 23000~

We may often be of more consequence in ouy; gwr\ eyes thanin 677 Sunny 30 16500~
the eyes of ourneighbours ’ ¥ 788 Racer 350 75000
789 Wintertime 140 87000~

Women 598 Winner 500 35000~

1405 Futura 350 110 000,

Junior 2458 Kid 80 7800,—

2467 Dixie 65 6500,—

Snowboard 7048 Crazy Elk 30 15700~

7060 Performer 65 45000~

EPUB/images/bookmarks.png
Content 1
Introduction 1

> [Introduction

EPUB/images/tab-colspan-rowspan.png

EPUB/images/tab-stretch-no.png
Zeile 1/ Zelle 1

Zeile 1/ Zelle 2

Zeile 2/ Zelle 1

Zeile 2/ Zelle 2

EPUB/images/18-dateisystem.png
[| speedataPublisher

Name

& data.xml
v [fonts
% MinionPro-Bold.otf
& MinionPro-BoldIt.otf
& MinionPro-It.otf
& MinionPro-Regular.otf
v [images
M forest.jpg
@ ocean.pdf
& layout.xml

A~

Art

XML Document
Ordner
OpenType®-Schrift
OpenType®-Schrift
OpenType®-Schrift
OpenType®-Schrift
Ordner

JPEG-Bild

PDF

XML Document

EPUB/images/ch-tab-balanceyes.png

EPUB/images/qrcode-hallowelt.png

EPUB/images/cursor.png

EPUB/images/rotieren.png

EPUB/images/ref-table-de.png
Platz Clulp Punkte Differenz Bemerkung
FC Bayern Minchen 56 +31 CL
2 FC Schalke 04 54 +22 CL
E Bayer 04 |_everkusen 53 +31 CL Qual.
4 Borussia Dortmund 45 +10 EL Qual.

EPUB/images/box116c.png

EPUB/images/ebook-cover-de.png
speedata Publisher

Anwendung und Referenz

Patrick Gundlach

EPUB/images/osfsmcp.png
Text with oldstyle figures 1234567890
TEXT WITH SMALL CAPS 1234567890

EPUB/images/29-autocomplete2.png
<Textblock, b</Textblock>

</PlaceObject>
<PlaceObject cq

<Box width="4
</PlaceObject>
<PlaceObject cq

<Box width="4
</PlaceObject>
<PlaceObject cq

@ angle

@ color

@ columndistance
@ columns

a fontface

@ minheight

@ textformat

rtl’he name of the font family. Defaults to text.
nacotor="Tightgray 7>

fate="no">
hdcolor="1ightgray"/>

pcate="no">

<Box width="4"Thetant="72"Dpackaroundcolor="11iaghtarav"/>

EPUB/images/positioningareas.png
pagehead, height of the area: 2

EPUB/images/25-publisher.png

EPUB/images/tab-stretch-max.png
Zeile 1/ Zelle 1

Zeile 1/ Zelle 2

Zeile 2/ Zelle 1

Zeile 2 / Zelle 2

EPUB/images/frac-feature-hb.png
Use 1/4 cup of milk.
Use V4 cup of milk.

EPUB/images/29-doczuordnung1.png
[] Document type rule

Activates on any document matching ALL the following criteria:

Namespace: urn:speedata.de:2009/publisher/en

Root local name: *

File name: *
Public ID: *
Attribute:

Local name: *
Namespace: *

Value: *

Java class: Choose Reset

EPUB/images/nobreak2.png
A wonderful serenity has taken possession of my entire soul, lik...

EPUB/images/url.png
https://github.com/
speedata/publisher/ |
issues !

EPUB/images/ref-table-en.png
1 Paris Saint-Germain FC

2 FCPorto
3 FC Dynamo Kyiv
4 GNK Dinamo Zagreb

o000
oaaanm
amao

EPUB/images/ch-tab-tables-notbalanced.png
[v e

i A e

en s e

e = 20 v]

e e

i v e

en s e

e

e i v

EPUB/images/hreferenz.png
company

EPUB/images/olulwithtext.png
+One

* Two

* Lorem ipsum dolor sit amet, consect-
etur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore
magna aliqua. Ut enim ad minim ve-
niam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deser-
unt mollit anim id est laborum.

EPUB/images/twoimages.png

EPUB/images/14-fontsize-leading.png
. e . eht,seddo . 1 .]] | jleading

ut labore et dolore magna aliqua. Ut enim

ad minim veniam, quis nostrud exercitation | fontsize

ullamco laboris nisi ut aliquip ex ea commodo
consequat. Duis aute irure dolor in reprehende-

EPUB/images/bidi-sample.png
(Umcode Conference) J)Q)J j.ﬂLJ\
PRSI 1997);\ 12-10 L3 VIS0 L;.\S\

EPUB/images/ref-circlewithborder.png

EPUB/images/mermaid.png
Alice Bob John

Hello John, how are you?

loop [Healthcheck]

Fight against hfochand:ia

‘How about you?

Jolly good!

Alice Bob John

EPUB/images/tracetextformat.png
A Title

Lorem=z==xum dolor sit amet, consectetur adipisicing
elit, sed do eiusmod tempor incididunt ut labore et
dolore magna aliqua. Ut enim ad minim veniam, quis
nostrud exercitation ullamco laboris nisi ut aliquip
ex ea commodo consequat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore
eu fugiat nulla pariatur. Excepteur sint occaecat cu-
pidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

EPUB/images/pagetree-insert.png

EPUB/images/vscode-xml-redhat.png
(o

0

EXTENSIONS: MARKETPLACE =

xml

XML 0.12.0 D 644K Kk 4
XML Language Support by Red Hat
Red Hat §5%

XML Tools 2.5.0 >1.8M * 4

4 O U1 A W N =

EPUB/images/ref-initial-en.png
A certain king had a beau-
tiful garden, and in the
garden stood a tree which
bore golden apples.

EPUB/images/08-raster.png
Hello world!

EPUB/images/transformation.png
iranglaiiom

Sealiing

Rotation

Skewing

EPUB/images/ref-code128-speedata-publisher.png
(T THE ST ARMLTRL TN T TR I 1
speedata Publisher

